AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Coronary Artery Bypass

Showing 1 to 10 of 68 articles

Clear Filters

Machine learning-driven prediction of medical expenses in triple-vessel PCI patients using feature selection.

BMC health services research
Revascularization therapies, such as percutaneous coronary intervention (PCI) and coronary artery bypass grafting (CABG), alleviate symptoms and treat myocardial ischemia. Patients with multivessel disease, particularly those undergoing 3-vessel PCI,...

Machine Learning Model for Risk Prediction of Prolonged Intensive Care Unit in Patients Receiving Intra-aortic Balloon Pump Therapy during Coronary Artery Bypass Graft Surgery.

Journal of cardiovascular translational research
This study aimed to construct machine learning models and predict prolonged intensive care units (ICU) stay in patients receiving perioperative intra-aortic balloon pump (IABP) therapy during cardiac surgery. 236 patients were divided into the normal...

Accurate prediction of bleeding risk after coronary artery bypass grafting with dual antiplatelet therapy: A machine learning model vs. the PRECISE-DAPT score.

International journal of cardiology
BACKGROUND: Dual antiplatelet therapy (DAPT) after coronary artery bypass grafting (CABG), although might be protective for ischemic events, can lead to varying degrees of bleeding, resulting in serious clinical events, including death. This study ai...

Leveraging machine learning to enhance postoperative risk assessment in coronary artery bypass grafting patients with unprotected left main disease: a retrospective cohort study.

International journal of surgery (London, England)
BACKGROUND: Risk stratification for patients undergoing coronary artery bypass surgery (CABG) for left main coronary artery (LMCA) disease is essential for informed decision-making. This study explored the potential of machine learning (ML) methods t...

Development of a machine learning model to estimate length of stay in coronary artery bypass grafting.

Revista de saude publica
OBJECTIVE: To develop and validate a predictive model utilizing machine-learning techniques for estimating the length of hospital stay among patients who underwent coronary artery bypass grafting.

Deep learning reconstruction for coronary CT angiography in patients with origin anomaly, stent or bypass graft.

La Radiologia medica
PURPOSE: To develop and validate a deep learning (DL)-model for automatic reconstruction for coronary CT angiography (CCTA) in patients with origin anomaly, stent or bypass graft.

Machine learning-based model development for predicting risk factors of prolonged intra-aortic balloon pump therapy in patients with coronary artery bypass grafting.

Journal of cardiothoracic surgery
Machine learning algorithms are frequently used to clinical risk prediction. Our study was designed to predict risk factors of prolonged intra-aortic balloon pump (IABP) use in patients with coronary artery bypass grafting (CABG) through developing m...