AIMC Topic: Coronary Vessels

Clear Filters Showing 21 to 30 of 256 articles

Application of deep learning in automated localization and interpretation of coronary artery calcification in oncological PET/CT scans.

The international journal of cardiovascular imaging
Coronary artery calcification (CAC) is a key marker of coronary artery disease (CAD) but is often underreported in cancer patients undergoing non-gated CT or PET/CT scans. Traditional CAC assessment requires gated CT scans, leading to increased radia...

End-to-end deep-learning model for the detection of coronary artery stenosis on coronary CT images.

Open heart
PURPOSE: We examined whether end-to-end deep-learning models could detect moderate (≥50%) or severe (≥70%) stenosis in the left anterior descending artery (LAD), right coronary artery (RCA) or left circumflex artery (LCX) in iodine contrast-enhanced ...

Automated stenosis estimation of coronary angiographies using end-to-end learning.

The international journal of cardiovascular imaging
The initial evaluation of stenosis during coronary angiography is typically performed by visual assessment. Visual assessment has limited accuracy compared to fractional flow reserve and quantitative coronary angiography, which are more time-consumin...

Segmentation and Vascular Vectorization for Coronary Artery by Geometry-Based Cascaded Neural Network.

IEEE transactions on medical imaging
Segmentation of the coronary artery is an important task for the quantitative analysis of coronary computed tomography angiography (CCTA) images and is being stimulated by the field of deep learning. However, the complex structures with tiny and narr...

Radiomics and deep learning features of pericoronary adipose tissue on non-contrast computerized tomography for predicting non-calcified plaques.

Journal of X-ray science and technology
BACKGROUND: Inflammation of coronary arterial plaque is considered a key factor in the development of coronary heart disease. Early the plaque detection and timely treatment of the atherosclerosis could effectively reduce the risk of cardiovascular e...

Artificial Intelligence-Driven Assessment of Coronary Computed Tomography Angiography for Intermediate Stenosis: Comparison With Quantitative Coronary Angiography and Fractional Flow Reserve.

The American journal of cardiology
We aimed to compare artificial intelligence (AI)-based coronary stenosis evaluation of coronary computed tomography angiography (CCTA) with its quantitative counterpart of invasive coronary angiography (ICA) and invasive fractional flow reserve (FFR)...

Constraint-Aware Learning for Fractional Flow Reserve Pullback Curve Estimation From Invasive Coronary Imaging.

IEEE transactions on medical imaging
Estimation of the fractional flow reserve (FFR) pullback curve from invasive coronary imaging is important for the intraoperative guidance of coronary intervention. Machine/deep learning has been proven effective in FFR pullback curve estimation. How...