Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
34892093
An Automatic deep learning semantic segmentation (ADLS) using DeepLab-v3-plus technique is proposed for a full and accurate whole heart Epicardial adipose tissue (EAT) segmentation from non-contrast cardiac CT scan. The ADLS algorithm was trained on ...
To develop a fully automatic model capable of reliably quantifying epicardial adipose tissue (EAT) volumes and attenuation in large scale population studies to investigate their relation to markers of cardiometabolic risk. Non-contrast cardiac CT ima...
Epicardial adipose tissue volume (EAT) has been linked to coronary artery disease and the risk of major adverse cardiac events. As manual quantification of EAT is time-consuming, requires specialized training, and is prone to human error, we develope...
BACKGROUND: Epicardial adipose tissue (EAT) volume is a marker of visceral obesity that can be measured in coronary computed tomography angiograms (CCTA). The clinical value of integrating this measurement in routine CCTA interpretation has not been ...
Journal of the Chinese Medical Association : JCMA
38380919
BACKGROUND: Preoperative estimation of the volume of the left atrium (LA) and epicardial adipose tissue (EAT) on computed tomography (CT) images is associated with an increased risk of atrial fibrillation (AF) recurrence. We aimed to design a deep le...
BACKGROUND: A deep learning (DL) model that automatically detects cardiac pathologies on cardiac MRI may help streamline the diagnostic workflow. To develop a DL model to detect cardiac pathologies on cardiac MRI T1-mapping and late gadolinium phase ...
BACKGROUND AND AIMS: This study investigated the additional prognostic value of epicardial adipose tissue (EAT) volume for major adverse cardiovascular events (MACE) in patients undergoing stress cardiac magnetic resonance (CMR) imaging.
BACKGROUND: The aim of this study (EPIDIAB) was to assess the relationship between epicardial adipose tissue (EAT) and the micro and macrovascular complications (MVC) of type 2 diabetes (T2D).
BACKGROUND: Accurate and automatic segmentation of pericardial adipose tissue (PEAT) in cardiac magnetic resonance (MR) images is essential for the diagnosis and treatment of cardiovascular diseases. Precise segmentation is challenging due to high co...
Journal of cardiovascular computed tomography
39909764
BACKGROUND: Low-cost/no-cost non-contrast CT calcium scoring (CTCS) exams can provide direct evidence of coronary atherosclerosis. In this study, using features from CTCS images, we developed a novel machine learning model to predict obstructive coro...