AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

COVID-19

Showing 91 to 100 of 2200 articles

Clear Filters

Unraveling microglial spatial organization in the developing human brain with DeepCellMap, a deep learning approach coupled with spatial statistics.

Nature communications
Mapping cellular organization in the developing brain presents significant challenges due to the multidimensional nature of the data, characterized by complex spatial patterns that are difficult to interpret without high-throughput tools. Here, we pr...

Understanding the Engagement and Interaction of Superusers and Regular Users in UK Respiratory Online Health Communities: Deep Learning-Based Sentiment Analysis.

Journal of medical Internet research
BACKGROUND: Online health communities (OHCs) enable people with long-term conditions (LTCs) to exchange peer self-management experiential information, advice, and support. Engagement of "superusers," that is, highly active users, plays a key role in ...

Reliability-enhanced data cleaning in biomedical machine learning using inductive conformal prediction.

PLoS computational biology
Accurately labeling large datasets is important for biomedical machine learning yet challenging while modern data augmentation methods may generate noise in the training data, which may deteriorate machine learning model performance. Existing approac...

Early detection of disease outbreaks and non-outbreaks using incidence data: A framework using feature-based time series classification and machine learning.

PLoS computational biology
Forecasting the occurrence and absence of novel disease outbreaks is essential for disease management, yet existing methods are often context-specific, require a long preparation time, and non-outbreak prediction remains understudied. To address this...

EAMAPG: Explainable Adversarial Model Analysis via Projected Gradient Descent.

Computers in biology and medicine
Despite the outstanding performance of deep learning (DL) models, their interpretability remains a challenging topic. In this study, we address the transparency of DL models in medical image analysis by introducing a novel interpretability method usi...

Classifying and fact-checking health-related information about COVID-19 on Twitter/X using machine learning and deep learning models.

BMC medical informatics and decision making
BACKGROUND: Despite recent progress in misinformation detection methods, further investigation is required to develop more robust fact-checking models with particular consideration for the unique challenges of health information sharing. This study a...

Understanding Citizens' Response to Social Activities on Twitter in US Metropolises During the COVID-19 Recovery Phase Using a Fine-Tuned Large Language Model: Application of AI.

Journal of medical Internet research
BACKGROUND: The COVID-19 pandemic continues to hold an important place in the collective memory as of 2024. As of March 2024, >676 million cases, 6 million deaths, and 13 billion vaccine doses have been reported. It is crucial to evaluate sociopsycho...

Bias Amplification to Facilitate the Systematic Evaluation of Bias Mitigation Methods.

IEEE journal of biomedical and health informatics
The future of artificial intelligence (AI) safety is expected to include bias mitigation methods from development to application. The complexity and integration of these methods could grow in conjunction with advances in AI and human-AI interactions....

UnBias: Unveiling Bias Implications in Deep Learning Models for Healthcare Applications.

IEEE journal of biomedical and health informatics
The rapid integration of deep learning-powered artificial intelligence systems in diverse applications such as healthcare, credit assessment, employment, and criminal justice has raised concerns about their fairness, particularly in how they handle v...

Forecasting Epidemic Spread With Recurrent Graph Gate Fusion Transformers.

IEEE journal of biomedical and health informatics
Predicting the unprecedented, nonlinear nature of COVID-19 presents a significant public health challenge. Recent advances in deep learning, such as graph neural networks (GNNs), recurrent neural networks (RNNs), and Transformers, have enhanced predi...