AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

COVID-19

Showing 81 to 90 of 2200 articles

Clear Filters

Peptide classification landscape: An in-depth systematic literature review on peptide types, databases, datasets, predictors architectures and performance.

Computers in biology and medicine
Peptides are gaining significant attention in diverse fields such as the pharmaceutical market has seen a steady rise in peptide-based therapeutics over the past six decades. Peptides have been utilized in the development of distinct applications inc...

AI-MET: A deep learning-based clinical decision support system for distinguishing multisystem inflammatory syndrome in children from endemic typhus.

Computers in biology and medicine
The COVID-19 pandemic brought several diagnostic challenges, including the post-infectious sequelae multisystem inflammatory syndrome in children (MIS-C). Some of the clinical features of this syndrome can be found in other pathologies such as Kawasa...

A hybrid inception-dilated-ResNet architecture for deep learning-based prediction of COVID-19 severity.

Scientific reports
Chest computed tomography (CT) scans are essential for accurately assessing the severity of the novel Coronavirus (COVID-19), facilitating appropriate therapeutic interventions and monitoring disease progression. However, determining COVID-19 severit...

Predicting sleep quality among college students during COVID-19 lockdown using a LASSO-based neural network model.

BMC public health
BACKGROUND: In March 2022, a new outbreak of COVID-19 emerged in Quanzhou, leading to the implementation of strict lockdown management measures in colleges. While existing research has indicated that the pandemic has had a significant impact on sleep...

Disease diagnostics using machine learning of B cell and T cell receptor sequences.

Science (New York, N.Y.)
Clinical diagnosis typically incorporates physical examination, patient history, various laboratory tests, and imaging studies but makes limited use of the human immune system's own record of antigen exposures encoded by receptors on B cells and T ce...

RAG_MCNNIL6: A Retrieval-Augmented Multi-Window Convolutional Network for Accurate Prediction of IL-6 Inducing Epitopes.

Journal of chemical information and modeling
Interleukin-6 (IL-6) is a critical cytokine involved in immune regulation, inflammation, and the pathogenesis of various diseases, including autoimmune disorders, cancer, and the cytokine storm associated with severe COVID-19. Identifying IL-6 induci...

Identification of biomarkers in Alzheimer's disease and COVID-19 by bioinformatics combining single-cell data analysis and machine learning algorithms.

PloS one
BACKGROUND: Since its emergence in 2019, COVID-19 has become a global epidemic. Several studies have suggested a link between Alzheimer's disease (AD) and COVID-19. However, there is little research into the mechanisms underlying these phenomena. The...

Using Machine Learning and Optical Microscopy Image Analysis of Immunosensors Made on Plasmonic Substrates: Application to Detect the SARS-CoV-2 Virus.

ACS sensors
In this article, we introduce a diagnostic platform comprising an optical microscopy image analysis system coupled with machine learning. Its efficacy is demonstrated in detecting SARS-CoV-2 virus particles at concentrations as low as 1 PFU (plaque-f...

RNA-protein interaction prediction using network-guided deep learning.

Communications biology
Accurate computational determination of RNA-protein interactions remains challenging, particularly when encountering unknown RNAs and proteins. The limited number of RNAs and their flexibility constrained the effectiveness of the deep-learning models...

Using a multi-strain infectious disease model with physical information neural networks to study the time dependence of SARS-CoV-2 variants of concern.

PLoS computational biology
With the ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its increasing adaptation to humans, several variants of concern (VOCs) and variants of interest (VOIs) have been identified since late 2020. These include...