AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Delirium

Showing 11 to 20 of 61 articles

Clear Filters

Machine learning for the prediction of delirium in elderly intensive care unit patients.

European geriatric medicine
PURPOSE: This study aims to develop and validate a prediction model for delirium in elderly ICU patients and help clinicians identify high-risk patients at the early stage.

A Deep-Learning-Based Approach for Delirium Monitoring in ICU Patients Using Thermograms.

Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Patients in the ICU frequently suffer from delirium, which can delay their recovery and may cause significant distress. Despite standardized scoring systems, its diagnosis and classification however, remain largely subjective and are subject to intra...

Adopting machine learning to predict ICU delirium.

Neurosurgical review
With neuropsychiatric complications recognized among COVID-19 patients translating into significant morbidity, we explore the current state-of-the-art for auto Machine Learning (ML) to predict ICU delirium among severe COVID-19 patients which has bee...

Application of machine learning for delirium prediction and analysis of associated factors in hospitalized COVID-19 patients: A comparative study using the Korean Multidisciplinary cohort for delirium prevention (KoMCoDe).

International journal of medical informatics
BACKGROUND: The incidence of delirium in hospitalized coronavirus disease 2019 (COVID-19) patients is linked to adverse health outcomes. Predicting the occurrence and risk factors of delirium is key to preventing its sudden onset.

Machine Learning for Prediction of Postoperative Delirium in Adult Patients: A Systematic Review and Meta-analysis.

Clinical therapeutics
PURPOSE: This meta-analysis aimed to evaluate the performance of machine learning (ML) models in predicting postoperative delirium (POD) and to provide guidance for clinical application.

Development of a LASSO machine learning algorithm-based model for postoperative delirium prediction in hepatectomy patients.

BMC surgery
OBJECTIVE: The objective of this study was to develop and validate a clinically applicable nomogram for predicting the risk of delirium following hepatectomy.

Unveiling the Immune Landscape of Delirium through Single-Cell RNA Sequencing and Machine Learning: Towards Precision Diagnosis and Therapy.

Psychogeriatrics : the official journal of the Japanese Psychogeriatric Society
BACKGROUND: Postoperative delirium (POD) poses significant clinical challenges regarding its diagnosis and treatment. Identifying biomarkers that can predict and diagnose POD is crucial for improving patient outcomes.

Functional MRI-based machine learning strategy for prediction of postoperative delirium in cardiac surgery patients: A secondary analysis of a prospective observational study.

Journal of clinical anesthesia
STUDY OBJECTIVE: Delirium is a common complication after cardiac surgery and is associated with poor prognosis. An effective delirium prediction model could identify high-risk patients who might benefit from targeted prevention strategies. We introdu...

Machine Learning-Based Prediction of Delirium and Risk Factor Identification in Intensive Care Unit Patients With Burns: Retrospective Observational Study.

JMIR formative research
BACKGROUND: The incidence of delirium in patients with burns receiving treatment in the intensive care unit (ICU) is high, reaching up to 77%, and has been associated with increased mortality rates. Therefore, early identification of patients at high...

Daily Automated Prediction of Delirium Risk in Hospitalized Patients: Model Development and Validation.

JMIR medical informatics
BACKGROUND: Delirium is common in hospitalized patients and is correlated with increased morbidity and mortality. Despite this, delirium is underdiagnosed, and many institutions do not have sufficient resources to consistently apply effective screeni...