AIMC Topic: Diabetes Mellitus, Type 2

Clear Filters Showing 101 to 110 of 423 articles

Machine learning assessment of vildagliptin and linagliptin effectiveness in type 2 diabetes: Predictors of glycemic control.

PloS one
OBJECTIVE: Differential effects of linagliptin and vildagliptin may help us personalize treatment for Type 2 Diabetes Mellitus (T2DM). The current study compares the effect of these drugs on glycated hemoglobin (HbA1c) in an artificial neural network...

Machine learning-based reproducible prediction of type 2 diabetes subtypes.

Diabetologia
AIMS/HYPOTHESIS: Clustering-based subclassification of type 2 diabetes, which reflects pathophysiology and genetic predisposition, is a promising approach for providing personalised and effective therapeutic strategies. Ahlqvist's classification is c...

From bytes to nephrons: AI's journey in diabetic kidney disease.

Journal of nephrology
Diabetic kidney disease (DKD) is a significant complication of type 2 diabetes, posing a global health risk. Detecting and predicting diabetic kidney disease at an early stage is crucial for timely interventions and improved patient outcomes. Artific...

Artificial Intelligence-Based Digital Biomarkers for Type 2 Diabetes: A Review.

The Canadian journal of cardiology
Type 2 diabetes mellitus (T2DM), a complex metabolic disorder that burdens the health care system, requires early detection and treatment. Recent strides in digital health technologies, coupled with artificial intelligence (AI), may have the potentia...

Artificial intelligence chatbots for the nutrition management of diabetes and the metabolic syndrome.

European journal of clinical nutrition
BACKGROUND: Recently, there has been a growing interest in exploring AI-driven chatbots, such as ChatGPT, as a resource for disease management and education.

Computational approaches for clinical, genomic and proteomic markers of response to glucagon-like peptide-1 therapy in type-2 diabetes mellitus: An exploratory analysis with machine learning algorithms.

Diabetes & metabolic syndrome
INTRODUCTION: In 2021, the International Diabetes Federation reported that 537 million people worldwide are living with diabetes. While glucagon-like peptide-1 agonists provide significant benefits in diabetes management, approximately 40% of patient...

A transparent machine learning algorithm uncovers HbA1c patterns associated with therapeutic inertia in patients with type 2 diabetes and failure of metformin monotherapy.

International journal of medical informatics
AIMS: This study aimed to identify and categorize the determinants influencing the intensification of therapy in Type 2 Diabetes (T2D) patients with suboptimal blood glucose control despite metformin monotherapy.