AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Diabetes Mellitus, Type 2

Showing 101 to 110 of 378 articles

Clear Filters

Machine learning for prediction of chronic kidney disease progression: Validation of the Klinrisk model in the CANVAS Program and CREDENCE trial.

Diabetes, obesity & metabolism
AIM: To validate the Klinrisk machine learning model for prediction of chronic kidney disease (CKD) progression in patients with type 2 diabetes in the pooled CANVAS/CREDENCE trials.

Comprehensive machine learning models for predicting therapeutic targets in type 2 diabetes utilizing molecular and biochemical features in rats.

Frontiers in endocrinology
INTRODUCTION: With the increasing prevalence of type 2 diabetes mellitus (T2DM), there is an urgent need to discover effective therapeutic targets for this complex condition. Coding and non-coding RNAs, with traditional biochemical parameters, have s...

DDLA: a double deep latent autoencoder for diabetic retinopathy diagnose based on continuous glucose sensors.

Medical & biological engineering & computing
The current diagnosis of diabetic retinopathy is based on fundus images and clinical experience. However, considering the ineffectiveness and non-portability of medical devices, we aimed to develop a diagnostic model for diabetic retinopathy based on...

Prediction of retinopathy progression using deep learning on retinal images within the Scottish screening programme.

The British journal of ophthalmology
BACKGROUND/AIMS: National guidelines of many countries set screening intervals for diabetic retinopathy (DR) based on grading of the last screening retinal images. We explore the potential of deep learning (DL) on images to predict progression to ref...

Pilot-Study to Explore Metabolic Signature of Type 2 Diabetes: A Pipeline of Tree-Based Machine Learning and Bioinformatics Techniques for Biomarkers Discovery.

Nutrients
BACKGROUND: This study aims to identify unique metabolomics biomarkers associated with Type 2 Diabetes (T2D) and develop an accurate diagnostics model using tree-based machine learning (ML) algorithms integrated with bioinformatics techniques.

Longitudinal artificial intelligence-based deep learning models for diagnosis and prediction of the future occurrence of polyneuropathy in diabetes and prediabetes.

Neurophysiologie clinique = Clinical neurophysiology
OBJECTIVE: The objective of this study was to develop artificial intelligence-based deep learning models and assess their potential utility and accuracy in diagnosing and predicting the future occurrence of diabetic distal sensorimotor polyneuropathy...

AI-enhanced integration of genetic and medical imaging data for risk assessment of Type 2 diabetes.

Nature communications
Type 2 diabetes (T2D) presents a formidable global health challenge, highlighted by its escalating prevalence, underscoring the critical need for precision health strategies and early detection initiatives. Leveraging artificial intelligence, particu...

Effectiveness of artificial intelligence vs. human coaching in diabetes prevention: a study protocol for a randomized controlled trial.

Trials
BACKGROUND: Prediabetes is a highly prevalent condition that heralds an increased risk of progression to type 2 diabetes, along with associated microvascular and macrovascular complications. The Diabetes Prevention Program (DPP) is an established eff...

Machine Learning Approach to Metabolomic Data Predicts Type 2 Diabetes Mellitus Incidence.

International journal of molecular sciences
Metabolomics, with its wealth of data, offers a valuable avenue for enhancing predictions and decision-making in diabetes. This observational study aimed to leverage machine learning (ML) algorithms to predict the 4-year risk of developing type 2 dia...

Pre-hospital glycemia as a biomarker for in-hospital all-cause mortality in diabetic patients - a pilot study.

Cardiovascular diabetology
BACKGROUND: Type 2 Diabetes Mellitus (T2DM) presents a significant healthcare challenge, with considerable economic ramifications. While blood glucose management and long-term metabolic target setting for home care and outpatient treatment follow est...