AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Drug Discovery

Showing 21 to 30 of 1437 articles

Clear Filters

Prediction and Prioritisation of Novel Anthelmintic Candidates from Public Databases Using Deep Learning and Available Bioactivity Data Sets.

International journal of molecular sciences
The control of socioeconomically important parasitic roundworms (nematodes) of animals has become challenging or ineffective due to problems associated with widespread resistance in these worms to most classes of chemotherapeutic drugs (anthelmintics...

Machine Learning-Guided Screening and Molecular Docking for Proposing Naturally Derived Drug Candidates Against MERS-CoV 3CL Protease.

International journal of molecular sciences
In this study, we utilized machine learning techniques to identify potential inhibitors of the MERS-CoV 3CL protease. Among the models evaluated, the Random Forest (RF) algorithm exhibited the highest predictive performance, achieving an accuracy of ...

Ligand-Based Drug Discovery Leveraging State-of-the-Art Machine Learning Methodologies Exemplified by Cdr1 Inhibitor Prediction.

Journal of chemical information and modeling
Artificial intelligence (AI) is revolutionizing drug discovery with unprecedented speed and efficiency. In computer-aided drug design, structure-based and ligand-based methodologies are the main driving forces for innovation. In cases where no experi...

A deep learning model for structure-based bioactivity optimization and its application in the bioactivity optimization of a SARS-CoV-2 main protease inhibitor.

European journal of medicinal chemistry
Bioactivity optimization is a crucial and technical task in the early stages of drug discovery, traditionally carried out through iterative substituent optimization, a process that is often both time-consuming and expensive. To address this challenge...

Addressing Imbalanced Classification Problems in Drug Discovery and Development Using Random Forest, Support Vector Machine, AutoGluon-Tabular, and H2O AutoML.

Journal of chemical information and modeling
The classification models built on class imbalanced data sets tend to prioritize the accuracy of the majority class, and thus, the minority class generally has a higher misclassification rate. Different techniques are available to address the class i...

Artificial intelligence in central-peripheral interaction organ crosstalk: the future of drug discovery and clinical trials.

Pharmacological research
Drug discovery before the 20th century often focused on single genes, molecules, cells, or organs, failing to capture the complexity of biological systems. The emergence of protein-protein interaction network studies in 2001 marked a turning point an...

AI-Driven Applications in Clinical Pharmacology and Translational Science: Insights From the ASCPT 2024 AI Preconference.

Clinical and translational science
Artificial intelligence (AI) is driving innovation in clinical pharmacology and translational science with tools to advance drug development, clinical trials, and patient care. This review summarizes the key takeaways from the AI preconference at the...

Pre-trained molecular representations enable antimicrobial discovery.

Nature communications
The rise in antimicrobial resistance poses a worldwide threat, reducing the efficacy of common antibiotics. Determining the antimicrobial activity of new chemical compounds through experimental methods remains time-consuming and costly. While compoun...

Discovery of naturally inspired antimicrobial peptides using deep learning.

Bioorganic chemistry
Non-ribosomal peptides (NRPs) are promising lead compounds for novel antibiotics. Bioinformatic mining of silent microbial NRPS gene clusters provide crucial insights for the discovery and de novo design of bioactive peptides. Here, we describe the e...

AI drug development's data problem.

Science (New York, N.Y.)
The future of drug discovery may be artificial intelligence (AI), but its present is not. AI is in its infancy in the field. To help AI mature, developers need nonproprietary, open, large, high-quality datasets to train and validate models, managed b...