AIMC Topic: Drug Evaluation, Preclinical

Clear Filters Showing 1 to 10 of 197 articles

Structure-based virtual screening, molecular docking, and MD simulation studies: An in-silico approach for identifying potential MBL inhibitors.

PloS one
The global rise of antibiotic-resistant infections has been driven in part by the spread of bacteria producing metallo-β-lactamase (MBL), particularly New Delhi metallo-β-lactamase-1 (NDM-1). Currently, there are no clinically approved inhibitors tar...

Sequence-based virtual screening using transformers.

Nature communications
Protein-ligand interactions play central roles in myriad biological processes and are of key importance in drug design. Deep learning approaches are becoming cost-effective alternatives to high-throughput experimental methods for ligand identificatio...

Ultrahigh-Throughput Virtual Screening Strategies against PPI Targets: A Case Study of STAT Inhibitors.

Journal of chemical information and modeling
In recent years, virtual screening of ultralarge (10) libraries of synthetically accessible compounds (uHTVS) became a popular approach in hit identification. With AI-assisted virtual screening workflows, such as Deep Docking, these protocols might b...

Deep learning-based dipeptidyl peptidase IV inhibitor screening, experimental validation, and GaMD/LiGaMD analysis.

BMC biology
BACKGROUND: Dipeptidyl peptidase-4 (DPP4) is considered a crucial enzyme in type 2 diabetes (T2D) treatment, targeted by inhibitors due to its role in cleaving glucagon-like peptide-1 (GLP-1). In this study, a novel DPP4 inhibitor screening strategy ...

Atomic Ga Site Enables Photonanozymes with Specific Inhibition Modes for Primary Drug Screening.

Analytical chemistry
Enzyme inhibition plays a crucial role in drug discovery by governing interactions between molecules and distinct enzymatic sites, facilitating the identification of early drug candidates. However, most nanozymes have been limited to single active si...

In Silico Screening of Small Molecule Inhibitors for Amyloid-β Aggregation.

Journal of chemical information and modeling
The self-aggregation of amyloid-β (Aβ) into fibrils is a hallmark of Alzheimer's disease (AD). Inhibition of Aβ aggregation with small molecule compounds represents a promising therapeutic strategy for AD. However, designing effective ligands is chal...

On the Difficulty to Rescore Hits from Ultralarge Docking Screens.

Journal of chemical information and modeling
Docking-based virtual screening tools customized to mine ultralarge chemical spaces are consistently reported to yield both higher hit rates and more potent ligands than that achieved by conventional docking of smaller million-sized compound librarie...

Artificial intelligence in preclinical research: enhancing digital twins and organ-on-chip to reduce animal testing.

Drug discovery today
Artificial intelligence (AI) is reshaping preclinical drug research offering innovative alternatives to traditional animal testing. Advanced techniques, including machine learning (ML), deep learning (DL), AI-powered digital twins (DTs), and AI-enhan...

Discovery and Characterization of Novel Receptor-Interacting Protein Kinase 1 Inhibitors Using Deep Learning and Virtual Screening.

ACS chemical neuroscience
Receptor-interacting protein kinase 1 (RIPK1) serves as a critical mediator of cell necroptosis and represents a promising therapeutic target for various human neurodegenerative diseases and inflammatory diseases. Nonetheless, the RIPK1 inhibitors cu...