AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Electronic Health Records

Showing 51 to 60 of 2329 articles

Clear Filters

MetaGP: A generative foundation model integrating electronic health records and multimodal imaging for addressing unmet clinical needs.

Cell reports. Medicine
Artificial intelligence makes strides in specialized diagnostics but faces challenges in complex clinical scenarios, such as rare disease diagnosis and emergency condition identification. To address these limitations, we develop Meta General Practiti...

Advancing Clinical Information Systems: Harnessing Telemedicine, Data Science, and AI for Enhanced and More Precise Healthcare Delivery.

Yearbook of medical informatics
OBJECTIVE: In this synopsis, the editors of the Clinical Information Systems (CIS) section of the IMIA Yearbook of Medical Informatics overview recent research and propose a selection of best papers published in 2023 in the CIS field.

Natural Language Processing to Extract Head and Neck Cancer Data From Unstructured Electronic Health Records.

Clinical oncology (Royal College of Radiologists (Great Britain))
AIMS: Patient data is frequently stored as unstructured data within Electronic Health Records (EHRs), requiring manual curation. AI tools using Natural Language Processing (NLP) may rapidly curate accurate real-world unstructured EHRs to enrich datas...

Integrating large language models with human expertise for disease detection in electronic health records.

Computers in biology and medicine
OBJECTIVE: Electronic health records (EHR) are widely available to complement administrative data-based disease surveillance and healthcare performance evaluation. Defining conditions from EHR is labour-intensive and requires extensive manual labelli...

Machine learning algorithms for diabetic kidney disease risk predictive model of Chinese patients with type 2 diabetes mellitus.

Renal failure
BACKGROUND: Diabetic kidney disease (DKD) is a common and serious complication of diabetic mellitus (DM). More sensitive methods for early DKD prediction are urgently needed. This study aimed to set up DKD risk prediction models based on machine lear...

Assessing Patient-Reported Satisfaction With Care and Documentation Time in Primary Care Through AI-Driven Automatic Clinical Note Generation: Protocol for a Proof-of-Concept Study.

JMIR research protocols
BACKGROUND: Relisten is an artificial intelligence (AI)-based software developed by Recog Analytics that improves patient care by facilitating more natural interactions between health care professionals and patients. This tool extracts relevant infor...

Applications, challenges and future directions of artificial intelligence in cardio-oncology.

European journal of clinical investigation
BACKGROUND: The management of cardiotoxicity related to cancer therapies has emerged as a significant clinical challenge, prompting the rapid growth of cardio-oncology. As cancer treatments become more complex, there is an increasing need to enhance ...

Identification of patients at risk for pancreatic cancer in a 3-year timeframe based on machine learning algorithms.

Scientific reports
Early detection of pancreatic cancer (PC) remains challenging largely due to the low population incidence and few known risk factors. However, screening in at-risk populations and detection of early cancer has the potential to significantly alter sur...

Identifying progression subphenotypes of Alzheimer's disease from large-scale electronic health records with machine learning.

Journal of biomedical informatics
OBJECTIVE: Identification of clinically meaningful subphenotypes of disease progression can enhance the understanding of disease heterogeneity and underlying pathophysiology. In this study, we propose a machine learning framework to identify subpheno...

Identifying Patient-Reported Outcome Measure Documentation in Veterans Health Administration Chiropractic Clinic Notes: Natural Language Processing Analysis.

JMIR medical informatics
BACKGROUND: The use of patient-reported outcome measures (PROMs) is an expected component of high-quality, measurement-based chiropractic care. The largest health care system offering integrated chiropractic care is the Veterans Health Administration...