AIMC Topic: Embryo, Nonmammalian

Clear Filters Showing 1 to 10 of 25 articles

Artificial intelligence (AI)-driven morphological assessment of zebrafish larvae for developmental toxicity chemical screening.

Aquatic toxicology (Amsterdam, Netherlands)
Screening chemicals using the zebrafish embryo developmental toxicity assay requires visual assessment of larval morphological changes based on images by experienced screeners. The process is time-consuming and prone to subjectivity. However, deep le...

Using machine learning models to predict the dose-effect curve of municipal wastewater for zebrafish embryo toxicity.

Journal of hazardous materials
Municipal wastewater substantially contributes to aquatic ecological risks. Assessing the toxicity of municipal wastewater through dose-effect curves is challenging owing to the time-consuming, labor-intensive, and costly nature of biological assays....

The regulatory landscape of 5' UTRs in translational control during zebrafish embryogenesis.

Developmental cell
The 5' UTRs of mRNAs are critical for translation regulation during development, but their in vivo regulatory features are poorly characterized. Here, we report the regulatory landscape of 5' UTRs during early zebrafish embryogenesis using a massivel...

Deep learning-assisted detection of psychoactive water pollutants using behavioral profiling of zebrafish embryos.

Journal of hazardous materials
Water pollution poses a significant risk to the environment and human health, necessitating the development of innovative detection methods. In this study, a series of representative psychoactive compounds were selected as model pollutants, and a new...

Prediction of developmental toxic effects of fine particulate matter (PM) water-soluble components via machine learning through observation of PM from diverse urban areas.

The Science of the total environment
The global health implications of fine particulate matter (PM) underscore the imperative need for research into its toxicity and chemical composition. In this study, zebrafish embryos exposed to the water-soluble components of PM from two cities (Har...

Comparing robotic and manual injection methods in zebrafish embryos for high-throughput RNA silencing using CRISPR-RfxCas13d.

BioTechniques
In this study, the authors compared the efficiency of automated robotic and manual injection methods for the CRISPR-RfxCas13d (CasRx) system for mRNA knockdown and Cas9-mediated DNA targeting in zebrafish embryos. They targeted the no tail () gene as...

Targeted design of synthetic enhancers for selected tissues in the Drosophila embryo.

Nature
Enhancers control gene expression and have crucial roles in development and homeostasis. However, the targeted de novo design of enhancers with tissue-specific activities has remained challenging. Here we combine deep learning and transfer learning t...

Deep Learning-Enabled Morphometric Analysis for Toxicity Screening Using Zebrafish Larvae.

Environmental science & technology
Toxicology studies heavily rely on morphometric analysis to detect abnormalities and diagnose disease processes. The emergence of ever-increasing varieties of environmental pollutants makes it difficult to perform timely assessments, especially using...

A novel deep learning-based 3D cell segmentation framework for future image-based disease detection.

Scientific reports
Cell segmentation plays a crucial role in understanding, diagnosing, and treating diseases. Despite the recent success of deep learning-based cell segmentation methods, it remains challenging to accurately segment densely packed cells in 3D cell memb...

Leveraging high-throughput screening data, deep neural networks, and conditional generative adversarial networks to advance predictive toxicology.

PLoS computational biology
There are currently 85,000 chemicals registered with the Environmental Protection Agency (EPA) under the Toxic Substances Control Act, but only a small fraction have measured toxicological data. To address this gap, high-throughput screening (HTS) an...