AIMC Topic: Ensemble Learning

Clear Filters Showing 11 to 20 of 66 articles

M3S-GRPred: a novel ensemble learning approach for the interpretable prediction of glucocorticoid receptor antagonists using a multi-step stacking strategy.

BMC bioinformatics
Accelerating drug discovery for glucocorticoid receptor (GR)-related disorders, including innovative machine learning (ML)-based approaches, holds promise in advancing therapeutic development, optimizing treatment efficacy, and mitigating adverse eff...

Prediction of Patient Visits for Skin Diseases through Enhanced Evolutionary Computation and Ensemble Learning.

Journal of medical systems
Skin diseases are an important global public health issue, causing significant health and psychological burdens. Predicting dermatology outpatient visits is essential for optimizing hospital resources and improving diagnosis and treatment methods. Ba...

Research on memory failure prediction based on ensemble learning.

PloS one
Timely prediction of memory failures is crucial for the stable operation of data centers. However, existing methods often rely on a single classifier, which can lead to inaccurate or unstable predictions. To address this, we propose a new ensemble mo...

Ensemble learning with explainable AI for improved heart disease prediction based on multiple datasets.

Scientific reports
Heart disease is one of the leading causes of death worldwide. Predicting and detecting heart disease early is crucial, as it allows medical professionals to take appropriate and necessary actions at earlier stages. Healthcare professionals can diagn...

A systematic literature review: exploring the challenges of ensemble model for medical imaging.

BMC medical imaging
BACKGROUND: Medical imaging has been essential and has provided clinicians with useful information about the human body to diagnose various health issues. Early diagnosis of diseases based on medical imaging can mitigate the risk of severe consequenc...

Mitochondrial toxic prediction of marine alga toxins using a predictive model based on feature coupling and ensemble learning algorithms.

Toxicology mechanisms and methods
Alga toxins have recently emerged as environmental risk factors to multiple human health issues. Mitochondrial toxicity is an essential element in the field of ecotoxicology, it is necessary to screen and manage mitochondrial toxicants from common al...

Domain generalization for image classification based on simplified self ensemble learning.

PloS one
Domain generalization seeks to acquire knowledge from limited source data and apply it to an unknown target domain. Current approaches primarily tackle this challenge by attempting to eliminate the differences between domains. However, as cross-domai...

An ensemble learning model to predict lymph node metastasis in early gastric cancer.

Scientific reports
Lymph node metastasis is a critical factor for determining therapeutic strategies and assessing the prognosis of early gastric cancer. This work aimed to establish a more dependable predictive model for identify lymph node metastasis in early gastric...

LMFE: A Novel Method for Predicting Plant LncRNA Based on Multi-Feature Fusion and Ensemble Learning.

Genes
: Long non-coding RNAs (lncRNAs) play a crucial regulatory role in plant trait expression and disease management, making their accurate prediction a key research focus for guiding biological experiments. While extensive studies have been conducted on...

Automated Autism Assessment With Multimodal Data and Ensemble Learning: A Scalable and Consistent Robot-Enhanced Therapy Framework.

IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
Navigating the complexities of Autism Spectrum Disorder (ASD) diagnosis and intervention requires a nuanced approach that addresses both the inherent variability in therapeutic practices and the imperative for scalable solutions. This paper presents ...