AIMC Topic: Enzyme Inhibitors

Clear Filters Showing 21 to 30 of 84 articles

Cheminformatics analysis of indoleamine and tryptophan 2,3-dioxygenase inhibitors: A descriptor and fingerprint based machine learning approach to disclose selectivity measures.

Computers in biology and medicine
Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) are attractive drug targets for cancer immunotherapy. After disappointing results of the epacadostat as a selective IDO inhibitor in phase III clinical trials, there is much inter...

Combined structure-based virtual screening and machine learning approach for the identification of potential dual inhibitors of ACC and DGAT2.

International journal of biological macromolecules
Acetyl-coenzyme A carboxylase (ACC) and diacylglycerol acyltransferase 2 (DGAT2) are recognized as potential therapeutic targets for nonalcoholic fatty liver disease (NAFLD). Inhibitors targeting ACC and DGAT2 have exhibited the capacity to reduce he...

Redefining a new frontier in alkaptonuria therapy with AI-driven drug candidate design via innovation.

Zeitschrift fur Naturforschung. C, Journal of biosciences
A rare metabolic condition called alkaptonuria (AKU) is caused by a decrease in homogentisate 1,2 dioxygenase (HGO) activity due to a mutation in homogentisate dioxygenase (HGD) gene. Homogentisic acid is a byproduct of the catabolism of tyrosine and...

Recent advances in the development of DprE1 inhibitors using AI/CADD approaches.

Drug discovery today
Tuberculosis (TB) is a global lethal disease caused by Mycobacterium tuberculosis (Mtb). The flavoenzyme decaprenylphosphoryl-β-d-ribose 2'-oxidase (DprE1) plays a crucial part in the biosynthesis of lipoarabinomannan and arabinogalactan for the cell...

Artificial Intelligence-Assisted Optimization of Antipigmentation Tyrosinase Inhibitors: Molecular Generation Based on a Low Activity Lead Compound.

Journal of medicinal chemistry
Artificial intelligence (AI) molecular generation is a highly promising strategy in the drug discovery, with deep reinforcement learning (RL) models emerging as powerful tools. This study introduces a fragment-by-fragment growth RL forward molecular...

Machine Learning-Driven Classification of Urease Inhibitors Leveraging Physicochemical Properties as Effective Filter Criteria.

International journal of molecular sciences
Urease, a pivotal enzyme in nitrogen metabolism, plays a crucial role in various microorganisms, including the pathogenic . Inhibiting urease activity offers a promising approach to combating infections and associated ailments, such as chronic kidney...

Deep Learning-Based construction of a Drug-Like compound database and its application in virtual screening of HsDHODH inhibitors.

Methods (San Diego, Calif.)
The process of virtual screening relies heavily on the databases, but it is disadvantageous to conduct virtual screening based on commercial databases with patent-protected compounds, high compound toxicity and side effects. Therefore, this paper uti...

Machine learning assisted methods for the identification of low toxicity inhibitors of Enoyl-Acyl Carrier Protein Reductase (InhA).

Computational biology and chemistry
Tuberculosis (TB) is one of the life-threatening infectious diseases with prehistoric origins and occurs in almost all habitable parts of the world. TB mainly affects the lungs, and its etiological agent is Mycobacterium tuberculosis (Mtb). In 2022, ...

Using deep learning and molecular dynamics simulations to unravel the regulation mechanism of peptides as noncompetitive inhibitor of xanthine oxidase.

Scientific reports
Xanthine oxidase (XO) is a crucial enzyme in the development of hyperuricemia and gout. This study focuses on LWM and ALPM, two food-derived inhibitors of XO. We used molecular docking to obtain three systems and then conducted 200 ns molecular dynam...

An Uncertainty-Guided Deep Learning Method Facilitates Rapid Screening of CYP3A4 Inhibitors.

Journal of chemical information and modeling
Cytochrome P450 3A4 (CYP3A4), a prominent member of the P450 enzyme superfamily, plays a crucial role in metabolizing various xenobiotics, including over 50% of clinically significant drugs. Evaluating CYP3A4 inhibition before drug approval is essent...