Current machine learning classifiers have successfully been applied to whole-genome sequencing data to identify genetic determinants of antimicrobial resistance (AMR), but they lack causal interpretation. Here we present a metabolic model-based machi...
Metagenomic sequencing methods provide considerable genomic information regarding human microbiomes, enabling us to discover and understand microbial diseases. Compositional differences have been reported between patients and healthy people, which co...
Comprehensive protein function annotation is essential for understanding microbiome-related disease mechanisms in the host organisms. However, a large portion of human gut microbial proteins lack functional annotation. Here, we have developed a new m...
Metagenomic analyses facilitate the exploration of the microbial world, advancing our understanding of microbial roles in ecological and biological processes. A pivotal aspect of metagenomic analysis involves assessing the quality of metagenome-assem...
The exponential growth of microbial genome data presents unprecedented opportunities for unlocking the potential of microorganisms. The burgeoning field of pangenomics offers a framework for extracting insights from this big biological data. Recent a...
Biosynthetic gene clusters (BGCs), key in synthesizing microbial secondary metabolites, are mostly hidden in microbial genomes and metagenomes. To unearth this vast potential, we present BGC-Prophet, a transformer-based language model for BGC predict...
Structural variants (SVs) in microbial genomes play a critical role in phenotypic changes, environmental adaptation, and species evolution, with deletion variations particularly closely linked to phenotypic traits. Therefore, accurate and comprehensi...