AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Genome

Showing 71 to 80 of 172 articles

Clear Filters

Characterizing chromatin folding coordinate and landscape with deep learning.

PLoS computational biology
Genome organization is critical for setting up the spatial environment of gene transcription, and substantial progress has been made towards its high-resolution characterization. The underlying molecular mechanism for its establishment is much less u...

A Deep Learning Framework Identifies Pathogenic Noncoding Somatic Mutations from Personal Prostate Cancer Genomes.

Cancer research
Our understanding of noncoding mutations in cancer genomes has been derived primarily from mutational recurrence analysis by aggregating clinical samples on a large scale. These cohort-based approaches cannot directly identify individual pathogenic n...

Predicting gene regulatory regions with a convolutional neural network for processing double-strand genome sequence information.

PloS one
With advances in sequencing technology, a vast amount of genomic sequence information has become available. However, annotating biological functions particularly of non-protein-coding regions in genome sequences without experiments is still a challen...

A supervised learning framework for chromatin loop detection in genome-wide contact maps.

Nature communications
Accurately predicting chromatin loops from genome-wide interaction matrices such as Hi-C data is critical to deepening our understanding of proper gene regulation. Current approaches are mainly focused on searching for statistically enriched dots on ...

Enhancer recognition and prediction during spermatogenesis based on deep convolutional neural networks.

Molecular omics
MOTIVATION: enhancers play an important role in the regulation of gene expression during spermatogenesis. The development of ChIP-Chip and ChIP-Seq sequencing technology has enabled researchers to focus on the relationship between enhancers and DNA s...

Improving genomic prediction accuracy for meat tenderness in Nellore cattle using artificial neural networks.

Journal of animal breeding and genetics = Zeitschrift fur Tierzuchtung und Zuchtungsbiologie
The goal of this study was to compare the predictive performance of artificial neural networks (ANNs) with Bayesian ridge regression, Bayesian Lasso, Bayes A, Bayes B and Bayes Cπ in estimating genomic breeding values for meat tenderness in Nellore c...

SpliceFinder: ab initio prediction of splice sites using convolutional neural network.

BMC bioinformatics
BACKGROUND: Identifying splice sites is a necessary step to analyze the location and structure of genes. Two dinucleotides, GT and AG, are highly frequent on splice sites, and many other patterns are also on splice sites with important biological fun...

Knowledge Base Commons (KBCommons) v1.1: a universal framework for multi-omics data integration and biological discoveries.

BMC genomics
BACKGROUND: Knowledge Base Commons (KBCommons) v1.1 is a universal and all-inclusive web-based framework providing generic functionalities for storing, sharing, analyzing, exploring, integrating and visualizing multiple organisms' genomics and integr...

Discovery and annotation of novel microRNAs in the porcine genome by using a semi-supervised transductive learning approach.

Genomics
Despite the broad variety of available microRNA (miRNA) prediction tools, their application to the discovery and annotation of novel miRNA genes in domestic species is still limited. In this study we designed a comprehensive pipeline (eMIRNA) for miR...

Analyzing Tumor Gene Expression Factors with the CorExplorer Web Portal.

Journal of visualized experiments : JoVE
Differential gene expression analysis is an important technique for understanding disease states. The machine learning algorithm CorEx has shown utility in analyzing differential expression of groups of genes in tumor RNA-seq in a way that may be hel...