AIMC Topic: Hydrogen Bonding

Clear Filters Showing 31 to 40 of 48 articles

Practical High-Quality Electrostatic Potential Surfaces for Drug Discovery Using a Graph-Convolutional Deep Neural Network.

Journal of medicinal chemistry
Inspecting protein and ligand electrostatic potential (ESP) surfaces in order to optimize electrostatic complementarity is a key activity in drug design. These ESP surfaces need to reflect the true electrostatic nature of the molecules, which typical...

Shape-Based Generative Modeling for de Novo Drug Design.

Journal of chemical information and modeling
In this work, we propose a machine learning approach to generate novel molecules starting from a seed compound, its three-dimensional (3D) shape, and its pharmacophoric features. The pipeline draws inspiration from generative models used in image ana...

Mechanism of glucocerebrosidase activation and dysfunction in Gaucher disease unraveled by molecular dynamics and deep learning.

Proceedings of the National Academy of Sciences of the United States of America
The lysosomal enzyme glucocerebrosidase-1 (GCase) catalyzes the cleavage of a major glycolipid glucosylceramide into glucose and ceramide. The absence of fully functional GCase leads to the accumulation of its lipid substrates in lysosomes, causing G...

Physicochemical property based computational scheme for classifying DNA sequence elements of Saccharomyces cerevisiae.

Computational biology and chemistry
GenerationE of huge "omics" data necessitates the development and application of computational methods to annotate the data in terms of biological features. In the context of DNA sequence, it is important to unravel the hidden physicochemical signatu...

Gaussian Process Regression Models for the Prediction of Hydrogen Bond Acceptor Strengths.

Molecular informatics
We present two approaches for the computation of hydrogen bond acceptor strengths, one by machine-learning and one by a composite quantum-mechanical protocol, both based on the well-established pK scale and dataset. The QM calculations after a necess...

Probing light chain mutation effects on thrombin via molecular dynamics simulations and machine learning.

Journal of biomolecular structure & dynamics
Thrombin is a key component for chemotherapeutic and antithrombotic therapy development. As the physiologic and pathologic roles of the light chain still remain vague, here, we continue previous efforts to understand the impacts of the disease-associ...

Knowledge-Based Conformer Generation Using the Cambridge Structural Database.

Journal of chemical information and modeling
Fast generation of plausible molecular conformations is central to molecular modeling. This paper presents an approach to conformer generation that makes extensive use of the information available in the Cambridge Structural Database. By using geomet...

Integration of element specific persistent homology and machine learning for protein-ligand binding affinity prediction.

International journal for numerical methods in biomedical engineering
Protein-ligand binding is a fundamental biological process that is paramount to many other biological processes, such as signal transduction, metabolic pathways, enzyme construction, cell secretion, and gene expression. Accurate prediction of protein...