Mammographic risk scoring has commonly been automated by extracting a set of handcrafted features from mammograms, and relating the responses directly or indirectly to breast cancer risk. We present a method that learns a feature hierarchy from unlab...
Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine
Feb 17, 2016
OBJECTIVES: The purpose of this study was to evaluate diagnostic performance of histogram analysis using grayscale ultrasound (US) images in the diagnosis of lymphocytic thyroiditis.
IEEE transactions on bio-medical engineering
Feb 15, 2016
GOAL: Most state-of-the-art computer-aided endoscopic diagnosis methods require pixelwise labeled data to train various supervised machine learning models. However, it is a tedious and time-consuming work to collect sufficient precisely labeled image...
The lack of publicly available ground-truth data has been identified as the major challenge for transferring recent developments in deep learning to the biomedical imaging domain. Though crowdsourcing has enabled annotation of large scale databases f...
We propose a novel segmentation approach based on deep 3D convolutional encoder networks with shortcut connections and apply it to the segmentation of multiple sclerosis (MS) lesions in magnetic resonance images. Our model is a neural network that co...
Remarkable progress has been made in image recognition, primarily due to the availability of large-scale annotated datasets and deep convolutional neural networks (CNNs). CNNs enable learning data-driven, highly representative, hierarchical image fea...
Cerebral microbleeds (CMBs) are small haemorrhages nearby blood vessels. They have been recognized as important diagnostic biomarkers for many cerebrovascular diseases and cognitive dysfunctions. In current clinical routine, CMBs are manually labelle...
Convolutional neural networks (CNNs) are deep learning network architectures that have pushed forward the state-of-the-art in a range of computer vision applications and are increasingly popular in medical image analysis. However, training of CNNs is...
Segmentation of the left ventricle (LV) from cardiac magnetic resonance imaging (MRI) datasets is an essential step for calculation of clinical indices such as ventricular volume and ejection fraction. In this work, we employ deep learning algorithms...
Detection and classification of cell nuclei in histopathology images of cancerous tissue stained with the standard hematoxylin and eosin stain is a challenging task due to cellular heterogeneity. Deep learning approaches have been shown to produce en...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.