AIMC Topic: Infant

Clear Filters Showing 81 to 90 of 947 articles

Impact of deep learning on pediatric elbow fracture detection: a systematic review and meta-analysis.

European journal of trauma and emergency surgery : official publication of the European Trauma Society
OBJECTIVES: Pediatric elbow fractures are a common injury among children. Recent advancements in artificial intelligence (AI), particularly deep learning (DL), have shown promise in diagnosing these fractures. This study systematically evaluated the ...

SegFormer3D: Improving the Robustness of Deep Learning Model-Based Image Segmentation in Ultrasound Volumes of the Pediatric Hip.

Ultrasound in medicine & biology
Developmental dysplasia of the hip (DDH) is a painful orthopedic malformation diagnosed at birth in 1-3% of all newborns. Left untreated, DDH can lead to significant morbidity including long-term disability. Currently the condition is clinically diag...

Deep learning-based automated guide for defining a standard imaging plane for developmental dysplasia of the hip screening using ultrasonography: a retrospective imaging analysis.

BMC medical informatics and decision making
BACKGROUND: We aimed to propose a deep-learning neural network model for automatically detecting five landmarks during a two-dimensional (2D) ultrasonography (US) scan to develop a standard plane for developmental dysplasia of the hip (DDH) screening...

An explainable and accurate transformer-based deep learning model for wheeze classification utilizing real-world pediatric data.

Scientific reports
Auscultation is a method that involves listening to sounds from the patient's body, mainly using a stethoscope, to diagnose diseases. The stethoscope allows for non-invasive, real-time diagnosis, and it is ideal for diagnosing respiratory diseases an...

Predictive modeling of methadone poisoning outcomes in children ≤ 5 years: utilizing machine learning and the National Poison Data System for improved clinical decision-making.

European journal of pediatrics
UNLABELLED: The escalating therapeutic use of methadone has coincided with an increase in accidental ingestions, particularly among children ≤ 5 years. This study utilized machine learning (ML) methodologies on data from the National Poison Data Syst...

Feature gene selection and functional validation of SH3KBP1 in infantile hemangioma using machine learning.

Biochemical and biophysical research communications
BACKGROUND: Infantile hemangioma (IH) is a prevalent vascular tumor in infancy with a complex pathogenesis that remains unclear. This study aimed to investigate the underlying mechanisms of IH using comprehensive bioinformatics analyses and in vitro ...

Interpretable machine learning-derived nomogram model for early detection of persistent diarrhea in Salmonella typhimurium enteritis: a propensity score matching based case-control study.

BMC infectious diseases
BACKGROUND: Salmonella typhimurium infection is a considerable global health concern, particularly in children, where it often leads to persistent diarrhea. This condition can result in severe health complications including malnutrition and cognitive...

Ultrasonic-Based Radiomics Signature With Machine Learning for Differentiating Prognostic Subsets of Pediatric Peripheral Neuroblastic Tumors: A Retrospective Study.

Ultrasound in medicine & biology
OBJECTIVE: To construct and select a better model based on ultrasonic-based radiomics features and clinical characteristics for prognostic subsets of pediatric neuroblastic tumors.

Analyzing and forecasting under-5 mortality trends in Bangladesh using machine learning techniques.

PloS one
BACKGROUND: Under-5 mortality remains a critical social indicator of a country's development and economic sustainability, particularly in developing nations like Bangladesh. This study employs machine learning models, including Linear Regression, Rid...