AIMC Topic: Intra-Abdominal Fat

Clear Filters Showing 11 to 20 of 40 articles

The development of an attention mechanism enhanced deep learning model and its application for body composition assessment with L3 CT images.

Scientific reports
Body composition assessment is very useful for evaluating a patient's status in the clinic, but recognizing, labeling, and calculating the body compositions would be burdensome. This study aims to develop a web-based service that could automate calcu...

Machine learning allows robust classification of visceral fat in women with obesity using common laboratory metrics.

Scientific reports
The excessive accumulation and malfunctioning of visceral adipose tissue (VAT) is a major determinant of increased risk of obesity-related comorbidities. Thus, risk stratification of people living with obesity according to their amount of VAT is of c...

Using a new artificial intelligence-aided method to assess body composition CT segmentation in colorectal cancer patients.

Journal of medical radiation sciences
INTRODUCTION: This study aimed to evaluate the accuracy of our own artificial intelligence (AI)-generated model to assess automated segmentation and quantification of body composition-derived computed tomography (CT) slices from the lumber (L3) regio...

Employing machine learning for enhanced abdominal fat prediction in cavitation post-treatment.

Scientific reports
This study investigates the application of cavitation in non-invasive abdominal fat reduction and body contouring, a topic of considerable interest in the medical and aesthetic fields. We explore the potential of cavitation to alter abdominal fat com...

Automated abdominal adipose tissue segmentation and volume quantification on longitudinal MRI using 3D convolutional neural networks with multi-contrast inputs.

Magma (New York, N.Y.)
OBJECTIVE: Increased subcutaneous and visceral adipose tissue (SAT/VAT) volume is associated with risk for cardiometabolic diseases. This work aimed to develop and evaluate automated abdominal SAT/VAT segmentation on longitudinal MRI in adults with o...

Impact of visceral fat area on short-term outcomes in robotic surgery for mid and low rectal cancer.

Journal of robotic surgery
Rectal cancer is one of the most prevalent cancers that arise in the digestive tract. The purpose of this retrospective study was to investigate the impact of visceral fat area (VFA) on postoperative outcomes in mid and low rectal cancer patients und...

Impact of Visceral Fat Area on Intraoperative Complexity and Surgical Approach Decision for Robot-Assisted Partial Nephrectomy: A Comparative Analysis with BMI.

Medical science monitor : international medical journal of experimental and clinical research
BACKGROUND Optimizing surgical approaches for robot-assisted partial nephrectomy (RAPN) is vital for better patient outcomes. This retrospective study aimed to examine how visceral fat area (VFA) and body mass index (BMI) correlate with intraoperativ...

Automated Deep Learning-Based Segmentation of Abdominal Adipose Tissue on Dixon MRI in Adolescents: A Prospective Population-Based Study.

AJR. American journal of roentgenology
The prevalence of childhood obesity has increased significantly worldwide, highlighting a need for accurate noninvasive quantification of body fat distribution in children. The purpose of this study was to develop and test an automated deep learnin...

Gender-specific data-driven adiposity subtypes using deep-learning-based abdominal CT segmentation.

Obesity (Silver Spring, Md.)
OBJECTIVE: The aim of this study was to quantify abdominal adiposity and generate data-driven adiposity subtypes with different diabetes risks.

An effective automatic segmentation of abdominal adipose tissue using a convolution neural network.

Diabetes & metabolic syndrome
BACKGROUND AND AIMS: Computer-aided diagnosis and prognosis rely heavily on fully automatic segmentation of abdominal fat tissue using Emission Tomography images. The identification of subcutaneous adipose tissue (SAT) and visceral adipose tissue (VA...