AIMC Topic: Least-Squares Analysis

Clear Filters Showing 71 to 80 of 377 articles

Discrimination of internal crack for rice seeds using near infrared spectroscopy.

Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
It is an important thing to identify internal crack in seeds from normal seeds for evaluating the quality of rice seeds (Oryza sativa L.). In this study, non-destructive discrimination of internal crack in rice seeds using near infrared spectroscopy ...

Growth period determination and color coordinates visual analysis of tomato using hyperspectral imaging technology.

Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
Growth period determination and color coordinates prediction are essential for comparing postharvest fruit quality. This paper proposes a tomato growth period judgment and color coordinates prediction model based on hyperspectral imaging technology. ...

Data fusion of near-infrared and Raman spectroscopy: An innovative tool for non-destructive prediction of the TVB-N content of salmon samples.

Food research international (Ottawa, Ont.)
Total volatile basic nitrogen (TVB-N) serves as a crucial indicator for evaluating the freshness of salmon. This study aimed to achieve accurate and non-destructive prediction of TVB-N content in salmon fillets stored in multiple temperature settings...

Magnetic Resonance Spectroscopy Quantification Aided by Deep Estimations of Imperfection Factors and Macromolecular Signal.

IEEE transactions on bio-medical engineering
OBJECTIVE: Magnetic Resonance Spectroscopy (MRS) is an important technique for biomedical detection. However, it is challenging to accurately quantify metabolites with proton MRS due to serious overlaps of metabolite signals, imperfections because of...

Geographical origin identification of Khao Dawk Mali 105 rice using combination of FT-NIR spectroscopy and machine learning algorithms.

Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
The mislabelled Khao Dawk Mali 105 rice coming from other geographical region outside the Thung Kula Rong Hai region is extremely profitable and difficult to detect; to prevent retail fraud (that adversely affects both the food industry and consumers...

Predicting drug solubility in organic solvents mixtures: A machine-learning approach supported by high-throughput experimentation.

International journal of pharmaceutics
A novel approach based on supervised machine-learning is proposed to predict the solubility of drugs and drug-like molecules in mixtures of organic solvents. Similar to quantitative structure-property relationship (QSPR) models, different solvent typ...

Modeling risk assessment of soil heavy metal pollution using partial least squares and fuzzy logic: A case study of a gully type coal-based solid waste dumpsite.

Environmental pollution (Barking, Essex : 1987)
Continuous release and migration of heavy metals from coal-based solid waste (CSW) dumpsites often results in significant encroachment on ecological lands and pollution of natural environments. As a result, there is an urgent need for long-term and r...

Modeling and Optimization of an Enhanced Soft Sensor for the Fermentation Process of .

Sensors (Basel, Switzerland)
This paper proposes a novel soft sensor modeling approach, MIC-TCA-INGO-LSSVM, to address the decline in performance of soft sensor models during the fermentation process of , caused by changes in working conditions. Initially, the transfer component...

Rapid determination of starch and alcohol contents in fermented grains by hyperspectral imaging combined with data fusion techniques.

Journal of food science
Starch and alcohol serve as pivotal indicators in assessing the quality of lees fermentation. In this paper, two hyperspectral imaging (HSI) techniques (visible-near-infrared (Vis-NIR) and NIR) were utilized to acquire separate HSI data, which were t...

Bias-reduced neural networks for parameter estimation in quantitative MRI.

Magnetic resonance in medicine
PURPOSE: To develop neural network (NN)-based quantitative MRI parameter estimators with minimal bias and a variance close to the Cramér-Rao bound.