AIMC Topic: Neural Networks, Computer

Clear Filters Showing 261 to 270 of 29794 articles

Machine Learning Based Quantitative Structure-Dissolution Profile Relationship.

Journal of chemical information and modeling
Determining accurate drug dissolution processes in the gastrointestinal tract is critical in drug discovery as dissolution profiles provide essential information for estimating the bioavailability of orally administered drugs. While various methods h...

StrokeNeXt: an automated stroke classification model using computed tomography and magnetic resonance images.

BMC medical imaging
BACKGROUND AND OBJECTIVE: Stroke ranks among the leading causes of disability and death worldwide. Timely detection can reduce its impact. Machine learning delivers powerful tools for image‑based diagnosis. This study introduces StrokeNeXt, a lightwe...

Detecting genetic interactions with visible neural networks.

Communications biology
Non-linear interactions among single nucleotide polymorphisms (SNPs), genes, and pathways play an important role in human diseases, but identifying these interactions is a challenging task. Neural networks are state-of-the-art predictors in many doma...

A 3D lightweight network with Roberts edge enhancement model (LR-Net) for brain tumor segmentation.

Scientific reports
In clinical medicine, a reliable and resource-friendly computer-aided diagnosis (CAD) method for brain tumor segmentation is essential to enhance diagnostic accuracy and therapeutic outcomes, particularly in regions with uneven healthcare resource di...

GNNs surpass transformers in tumor medical image segmentation.

Scientific reports
To assess the suitability of Transformer-based architectures for medical image segmentation and investigate the potential advantages of Graph Neural Networks (GNNs) in this domain. We analyze the limitations of the Transformer, which models medical i...

Designing diverse and high-performance proteins with a large language model in the loop.

PLoS computational biology
We present a protein engineering approach to directed evolution with machine learning that integrates a new semi-supervised neural network fitness prediction model, Seq2Fitness, and an innovative optimization algorithm, biphasic annealing for diverse...

Machine learning-based prediction model for cognitive impairment risk in patients with chronic kidney disease.

PloS one
BACKGROUND: The high prevalence of cognitive impairment (CI) in Chronic kidney disease (CKD) patients impacts their quality of life and prognosis, yet risk prediction models for CI in this population remain underexplored.

Adaptive network steganography using deep learning and multimedia video analysis for enhanced security and fidelity.

PloS one
This study presents an advanced adaptive network steganography paradigm that integrates deep learning methodologies with multimedia video analysis to enhance the universality and security of network steganography practices. The proposed approach util...

A descriptor-free machine learning framework to improve antigen discovery for bacterial pathogens.

PloS one
Identifying protective antigens (PAs), i.e., targets for bacterial vaccines, is challenging as conducting in-vivo tests at the proteome scale is impractical. Reverse Vaccinology (RV) aids in narrowing down the pool of candidates through computational...

Shining Light on DNA Mutations through Machine Learning-Augmented Vibrational Spectroscopy.

Analytical chemistry
A method to directly predict the number of nucleic acid bases in a single-stranded DNA (ssDNA) or a genomic DNA has been proposed with a combination of Raman spectroscopy and an Artificial Neural Network (ANN) algorithm. In this work, the algorithm w...