PURPOSE: To compare change over time in eye-specific optical coherence tomography (OCT) retinal nerve fiber layer (RNFL)-based region-of-interest (ROI) maps developed using unsupervised deep-learning auto-encoders (DL-AE) to circumpapillary RNFL (cpR...
BACKGROUND/AIMS: To assess the performance of a deep learning classifier for differentiation of glaucomatous optic neuropathy (GON) from compressive optic neuropathy (CON) based on ganglion cell-inner plexiform layer (GCIPL) and retinal nerve fibre l...
PURPOSE: To predict the visual field (VF) of glaucoma patients within the central 10° from optical coherence tomography (OCT) measurements using deep learning and tensor regression.
PURPOSE: We sought to assess the performance of deep learning approaches for differentiating nonglaucomatous optic neuropathy with disc pallor (NGON) vs glaucomatous optic neuropathy (GON) on color fundus photographs by the use of image recognition.
Journal of neuro-ophthalmology : the official journal of the North American Neuro-Ophthalmology Society
Jun 1, 2020
BACKGROUND: Deep learning (DL) has demonstrated human expert levels of performance for medical image classification in a wide array of medical fields, including ophthalmology. In this article, we present the results of our DL system designed to deter...
In this work, we develop a robust, extensible tool to automatically and accurately count retinal ganglion cell axons in optic nerve (ON) tissue images from various animal models of glaucoma. We adapted deep learning to regress pixelwise axon count de...
Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie
Apr 1, 2020
PURPOSE: To develop a deep learning approach based on deep residual neural network (ResNet101) for the automated detection of glaucomatous optic neuropathy (GON) using color fundus images, understand the process by which the model makes predictions, ...
PURPOSE: To compare the diagnostic performance of human gradings vs predictions provided by a machine-to-machine (M2M) deep learning (DL) algorithm trained to quantify retinal nerve fiber layer (RNFL) damage on fundus photographs.
PURPOSE: To develop and evaluate a deep learning system for differentiating between eyes with and without glaucomatous visual field damage (GVFD) and predicting the severity of GFVD from spectral domain OCT (SD OCT) optic nerve head images.