AIMC Topic: False Negative Reactions

Clear Filters Showing 1 to 10 of 30 articles

Evaluating the pathological and clinical implications of errors made by an artificial intelligence colon biopsy screening tool.

BMJ open gastroenterology
OBJECTIVE: Artificial intelligence (AI) tools for histological diagnosis offer great potential to healthcare, yet failure to understand their clinical context is delaying adoption. IGUANA (Interpretable Gland-Graphs using a Neural Aggregator) is an A...

Early Detection of Parkinson's Disease Using Deep NeuroEnhanceNet With Smartphone Walking Recordings.

IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
With the development of digital medical technology, ubiquitous smartphones are emerging as valuable tools for the detection of complex and elusive diseases. This paper exploits smartphone walking recording for early detection of Parkinson's disease (...

Frequency and characteristics of errors by artificial intelligence (AI) in reading screening mammography: a systematic review.

Breast cancer research and treatment
PURPOSE: Artificial intelligence (AI) for reading breast screening mammograms could potentially replace (some) human-reading and improve screening effectiveness. This systematic review aims to identify and quantify the types of AI errors to better un...

The features associated with mammography-occult MRI-detected newly diagnosed breast cancer analysed by comparing machine learning models with a logistic regression model.

La Radiologia medica
PURPOSE: To compare machine learning (ML) models with logistic regression model in order to identify the optimal factors associated with mammography-occult (i.e. false-negative mammographic findings) magnetic resonance imaging (MRI)-detected newly di...

Breast Tumor Detection and Classification in Mammogram Images Using Modified YOLOv5 Network.

Computational and mathematical methods in medicine
Breast cancer incidence has been rising steadily during the past few decades. It is the second leading cause of death in women. If it is diagnosed early, there is a good possibility of recovery. Mammography is proven to be an excellent screening tech...

Cataract Disease Detection by Using Transfer Learning-Based Intelligent Methods.

Computational and mathematical methods in medicine
One of the most common visual disorders is cataracts, which people suffer from as they get older. The creation of a cloud on the lens of our eyes is known as a cataract. Blurred vision, faded colors, and difficulty seeing in strong light are the main...

Clinical characteristics and oncological outcomes in negative multiparametric MRI patients undergoing robot-assisted radical prostatectomy.

The Prostate
BACKGROUND: Efforts are ongoing to try and find ways to reduce the number of unnecessary prostate biopsies without missing clinically significant prostate cancers (csPCa). The utility of multiparametric magnetic resonance imaging (mpMRI) in detecting...

App-based symptom tracking to optimize SARS-CoV-2 testing strategy using machine learning.

PloS one
BACKGROUND: Tests are scarce resources, especially in low and middle-income countries, and the optimization of testing programs during a pandemic is critical for the effectiveness of the disease control. Hence, we aim to use the combination of sympto...

Classification of COVID-19 patients from chest CT images using multi-objective differential evolution-based convolutional neural networks.

European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology
Early classification of 2019 novel coronavirus disease (COVID-19) is essential for disease cure and control. Compared with reverse-transcription polymerase chain reaction (RT-PCR), chest computed tomography (CT) imaging may be a significantly more tr...