BACKGROUND: In cancer care, determining the most beneficial treatment technique is a key decision affecting the patient's survival and quality of life. Patient selection for proton therapy (PT) over conventional radiotherapy (XT) currently entails co...
Journal of applied clinical medical physics
May 3, 2023
PURPOSE: In this paper, we compare four novel knowledge-based planning (KBP) algorithms using deep learning to predict three-dimensional (3D) dose distributions of head and neck plans using the same patients' dataset and quantitative assessment metri...
PURPOSE: To assess the clinical acceptability of a commercial deep-learning-based auto-segmentation (DLAS) prostate model that was retrained using institutional data for delineation of the clinical target volume (CTV) and organs-at-risk (OARs) for po...
Journal of applied clinical medical physics
Mar 15, 2023
BACKGROUND: Recently, target auto-segmentation techniques based on deep learning (DL) have shown promising results. However, inaccurate target delineation will directly affect the treatment planning dose distribution and the effect of subsequent radi...
Clinical oncology (Royal College of Radiologists (Great Britain))
Mar 11, 2023
BACKGROUND AND PURPOSE: Accurate and consistent delineation of cardiac substructures is challenging. The aim of this work was to validate a novel segmentation tool for automatic delineation of cardiac structures and subsequent dose evaluation, with p...
INTRODUCTION: The aim of this review is to describe how various AI-supported applications are used in head and neck cancer radiotherapy treatment planning, and the impact on dose management in regards to target volume and nearby organs at risk (OARs)...
Journal of applied clinical medical physics
Mar 3, 2023
BACKGROUND: Intensity-Modulated Radiation Therapy (IMRT) has been the standard of care for many types of tumors. However, treatment planning for IMRT is a time-consuming and labor-intensive process.
BACKGROUND: Contouring error is one of the top failure modes in radiation treatment. Multiple efforts have been made to develop tools to automatically detect segmentation errors. Deep learning-based auto-segmentation (DLAS) has been used as a baselin...
. The purpose of this study was to evaluate the accuracy of brachytherapy (BT) planning structures derived from Deep learning (DL) based auto-segmentation compared with standard manual delineation for postoperative cervical cancer.. We introduced a c...
BACKGROUND: Delineation of Organs-at-Risks (OARs) is an important step in radiotherapy treatment planning. As manual delineation is time-consuming, labor-intensive and affected by inter- and intra-observer variability, a robust and efficient automati...