BMC medical informatics and decision making
Feb 15, 2025
The diagnosis of pancreatic cancer presents a significant challenge due to the asymptomatic nature of the disease and the fact that it is frequently detected at an advanced stage. This study presents a novel approach combining graph-based data repres...
One bottleneck of magnetic resonance imaging (MRI)-guided online adaptive radiotherapy is the time-consuming daily online replanning process. The current leaf sequencing method takes up to 10 min, with potential dosimetric degradation and small segme...
Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
Jan 31, 2025
PURPOSE: This multicenter study aimed to develop and validate a multiscale deep learning radiomics nomogram for predicting recurrence-free survival (RFS) in patients with pancreatic ductal adenocarcinoma (PDAC).
OBJECTIVES: To evaluate the efficiency of super-resolution deep-learning reconstruction (SR-DLR) optimized for helical body imaging in assessing pancreatic ductal adenocarcinoma (PDAC) using normal-resolution (NR) CT scanner.
To retrospectively develop and validate an interpretable deep learning model and nomogram utilizing endoscopic ultrasound (EUS) images to predict pancreatic neuroendocrine tumors (PNETs). Following confirmation via pathological examination, a retrosp...
United European gastroenterology journal
Jan 26, 2025
The rising incidence of pancreatic diseases, including acute and chronic pancreatitis and various pancreatic neoplasms, poses a significant global health challenge. Pancreatic ductal adenocarcinoma (PDAC) for example, has a high mortality rate due to...
PURPOSE: Adaptive radiotherapy accounts for interfractional anatomic changes. We hypothesize that changes in the gross tumor volumes identified during daily scans could be analyzed using delta-radiomics to predict disease progression events. We evalu...
Pancreatic neuroendocrine tumors (PanNETs) are a heterogeneous group of neoplasms that include tumors with different histomorphologic characteristics that can be correlated to sub-categories with different prognoses. In addition to the WHO grading sc...
BACKGROUND: Accurate differentiation between benign and malignant pancreatic lesions is critical for effective patient management. This study aimed to develop and validate a novel deep learning network using baseline computed tomography (CT) images t...
OBJECTIVES: The objective is to develop and validate intratumoral and peritumoral ultrasomics models utilizing endoscopic ultrasonography (EUS) to predict pathological grading in pancreatic neuroendocrine tumors (PNETs).
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.