AIMC Topic: Pregnancy

Clear Filters Showing 161 to 170 of 1119 articles

Precision fetal cardiology detects cyanotic congenital heart disease using maternal saliva metabolome and artificial intelligence.

Scientific reports
Prenatal sonographic diagnosis of congenital heart disease (CHD) can lead to improved morbidity and mortality. However, the diagnostic accuracy of ultrasound, the sole prenatal screening tool, remains limited. Failed prenatal or early newborn detecti...

Prediction and unsupervised clustering of fertility intention among migrant workers based on machine learning: a cross-sectional survey from Henan, China.

BMC public health
BACKGROUND: Although China has implemented multiple policies to encourage childbirth, the results have been underwhelming. Migrant workers account for a considerable proportion of China's population, most of whom are of childbearing age. However, few...

Development of immune-derived molecular markers for preeclampsia based on multiple machine learning algorithms.

Scientific reports
Preeclampsia (PE) is a major pregnancy-specific cardiovascular complication posing latent life-threatening risks to mothers and neonates. The contribution of immune dysregulation to PE is not fully understood, highlighting the need to explore molecul...

Predictive value of machine learning for the progression of gestational diabetes mellitus to type 2 diabetes: a systematic review and meta-analysis.

BMC medical informatics and decision making
BACKGROUND: This systematic review aims to explore the early predictive value of machine learning (ML) models for the progression of gestational diabetes mellitus (GDM) to type 2 diabetes mellitus (T2DM).

The Future of Parenthood? Examining the Promise and Complexity of Pregnancy Robots in Reproductive Health.

Journal of medical systems
Advancements in reproductive technology are now approaching an unprecedented frontier: the pregnancy robot, a potential artificial womb capable of carrying a fetus from fertilization to birth. This innovation, by simulating the natural uterine enviro...

Predicting early cessation of exclusive breastfeeding using machine learning techniques.

PloS one
BACKGROUND: Identification of mother-infant pairs predisposed to early cessation of exclusive breastfeeding is important for delivering targeted support. Machine learning techniques enable development of transparent prediction models that enhance cli...

Explainable artificial intelligence to identify follicles that optimize clinical outcomes during assisted conception.

Nature communications
Infertility affects one-in-six couples, often necessitating in vitro fertilization treatment (IVF). IVF generates complex data, which can challenge the utilization of the full richness of data during decision-making, leading to reliance on simple 'ru...

Longitudinal twin growth discordance patterns and adverse perinatal outcomes.

American journal of obstetrics and gynecology
BACKGROUND: Growth discordance in twin pregnancies is associated with increased perinatal morbidity and mortality, yet the patterns of discordance progression and the utility of Doppler assessments remain underinvestigated.

The perception of artificial intelligence and infertility care among patients undergoing fertility treatment.

Journal of assisted reproduction and genetics
PURPOSE: To characterize the opinions of patients undergoing infertility treatment on the use of artificial intelligence (AI) in their care.

CLP-Net: an advanced artificial intelligence technique for localizing standard planes of cleft lip and palate by three-dimensional ultrasound in the first trimester.

BMC pregnancy and childbirth
BACKGROUND: Early diagnosis of cleft lip and palate (CLP) requires a multiplane examination, demanding high technical proficiency from radiologists. Therefore, this study aims to develop and validate the first artificial intelligence (AI)-based model...