OBJECTIVES: CT pulmonary angiography is the gold standard for diagnosing pulmonary embolism, and DL algorithms are being developed to manage the increase in demand. The nnU-Net is a new auto-adaptive DL framework that minimizes manual tuning, making ...
OBJECTIVE: To propose a convolutional neural network (EmbNet) for automatic pulmonary embolism detection on computed tomography pulmonary angiogram (CTPA) scans and to assess its diagnostic performance.
AJR. American journal of roentgenology
Jun 20, 2024
Artificial intelligence (AI) algorithms improved detection of incidental pulmonary embolism (IPE) on contrast-enhanced CT (CECT) examinations in retrospective studies; however, prospective validation studies are lacking. The purpose of this study w...
BACKGROUND: Pulmonary embolism (PE) is a severe and acute cardiovascular syndrome with high mortality among patients with autoimmune inflammatory rheumatic diseases (AIIRDs). Accurate prediction and timely intervention play a pivotal role in enhancin...
BMC medical informatics and decision making
May 27, 2024
BACKGROUND: Acute pulmonary thromboembolism (PTE) is a common cardiovascular disease and recognizing low prognosis risk patients with PTE accurately is significant for clinical treatment. This study evaluated the value of federated learning (FL) tech...
Methodist DeBakey cardiovascular journal
May 16, 2024
The presentation of pulmonary embolism (PE) varies from asymptomatic to life-threatening, and management involves multiple specialists. Timely diagnosis of PE is based on clinical presentation, D-dimer testing, and computed tomography pulmonary angio...
Pulmonary Embolisms (PE) represent a leading cause of cardiovascular death. While medical imaging, through computed tomographic pulmonary angiography (CTPA), represents the gold standard for PE diagnosis, it is still susceptible to misdiagnosis or si...
PURPOSE: Recent advancements in medical imaging have transformed diagnostic assessments, offering exciting possibilities for extracting biomarker-based information. This study aims to investigate the capabilities of a machine learning classifier that...
STUDY OBJECTIVE: This study aimed to (1) develop and validate a natural language processing model to identify the presence of pulmonary embolism (PE) based on real-time radiology reports and (2) identify low-risk PE patients based on previously valid...
PURPOSE: To evaluate the diagnostic performance and generalizability of the winning DL algorithm of the RSNA 2020 PE detection challenge to a local population using CTPA data from two hospitals.
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.