PURPOSE: The purpose of this study was to compare the performance of Precise IQ Engine (PIQE) and Advanced intelligent Clear-IQ Engine (AiCE) algorithms on image-quality according to the dose level in a cardiac computed tomography (CT) protocol.
In this study, we propose a method for obtaining a new index to evaluate the resolution properties of computed tomography (CT) images in a task-based manner. This method applies a deep convolutional neural network (DCNN) machine learning system train...
A super-resolution deep learning reconstruction (SR-DLR) algorithm trained using data acquired on the ultrahigh spatial resolution computed tomography (UHRCT) has the potential to provide better image quality of coronary arteries on the whole-heart, ...
This study aimed to evaluate the ability of deep learning reconstruction (DLR) compared to that of hybrid iterative reconstruction (IR) to depict small vessels on computed tomography (CT). DLR and two types of hybrid IRs were used for image reconstru...
PURPOSE: The aim of this study was to compare the physical properties of small focal spot imaging with deep learning reconstruction (DLR) and small or large focal spot imaging with hybrid iterative reconstruction (IR) in chest-abdominal plain compute...
Journal of computer assisted tomography
Oct 11, 2023
OBJECTIVE: The increasing number of coronary computed tomography angiography (CCTA) requests raised concerns about dose exposure. New dose reduction strategies based on artificial intelligence have been proposed to overcome limitations of iterative r...
Reducing CT radiation dose is an often proposed measure to enhance patient safety, which, however results in increased image noise, translating into degradation of clinical image quality. Several deep learning methods have been proposed for low-dose ...
OBJECTIVE: To explore whether reduced-dose (RD) gemstone spectral imaging (GSI) and deep learning image reconstruction (DLIR) of 40 keV virtual monoenergetic image (VMI) enhanced the early detection and diagnosis of colorectal cancer liver metastases...
PURPOSE: To assess whether image quality differences between SECT (single-energy CT) and DECT (dual-energy CT 70 keV) with equivalent radiation doses result in altered detection and characterization accuracy of liver metastases when using deep learni...
Physical and engineering sciences in medicine
Sep 19, 2023
PURPOSE: This study aimed to assess the image characteristics of deep-learning-based image processing software (DLIP; FCT PixelShine, FUJIFILM, Tokyo, Japan) and compare it with filtered back projection (FBP), model-based iterative reconstruction (MB...