AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Radiotherapy Planning, Computer-Assisted

Showing 241 to 250 of 701 articles

Clear Filters

Consistency in contouring of organs at risk by artificial intelligence vs oncologists in head and neck cancer patients.

Acta oncologica (Stockholm, Sweden)
BACKGROUND: In the Danish Head and Neck Cancer Group (DAHANCA) 35 trial, patients are selected for proton treatment based on simulated reductions of Normal Tissue Complication Probability (NTCP) for proton compared to photon treatment at the referrin...

Deep learning-based fast denoising of Monte Carlo dose calculation in carbon ion radiotherapy.

Medical physics
BACKGROUND: Plan verification is one of the important steps of quality assurance (QA) in carbon ion radiotherapy. Conventional methods of plan verification are based on phantom measurement, which is labor-intensive and time-consuming. Although the pl...

Geometric evaluations of CT and MRI based deep learning segmentation for brain OARs in radiotherapy.

Physics in medicine and biology
Deep-learning auto-contouring (DL-AC) promises standardisation of organ-at-risk (OAR) contouring, enhancing quality and improving efficiency in radiotherapy. No commercial models exist for OAR contouring based on brain magnetic resonance imaging (MRI...

Deep learning-based detection and classification of multi-leaf collimator modeling errors in volumetric modulated radiation therapy.

Journal of applied clinical medical physics
PURPOSE: The purpose of this study was to create and evaluate deep learning-based models to detect and classify errors of multi-leaf collimator (MLC) modeling parameters in volumetric modulated radiation therapy (VMAT), namely the transmission factor...

Clinical evaluation of deep learning-based automatic clinical target volume segmentation: a single-institution multi-site tumor experience.

La Radiologia medica
PURPOSE: The large variability in tumor appearance and shape makes manual delineation of the clinical target volume (CTV) time-consuming, and the results depend on the oncologists' experience. Whereas deep learning techniques have allowed oncologists...

Deep learning based automatic segmentation of organs-at-risk for 0.35 T MRgRT of lung tumors.

Radiation oncology (London, England)
BACKGROUND AND PURPOSE: Magnetic resonance imaging guided radiotherapy (MRgRT) offers treatment plan adaptation to the anatomy of the day. In the current MRgRT workflow, this requires the time consuming and repetitive task of manual delineation of or...

Performance assessment of variant UNet-based deep-learning dose engines for MR-Linac-based prostate IMRT plans.

Physics in medicine and biology
. UNet-based deep-learning (DL) architectures are promising dose engines for traditional linear accelerator (Linac) models. Current UNet-based engines, however, were designed differently with various strategies, making it challenging to fairly compar...

Generation of synthetic CT from CBCT using deep learning approaches for head and neck cancer patients.

Biomedical physics & engineering express
To create a synthetic CT (sCT) from daily CBCT using either deep residual U-Net (DRUnet), or conditional generative adversarial network (cGAN) for adaptive radiotherapy planning (ART).First fraction CBCT and planning CT (pCT) were collected from 93 H...

A hybrid method of correcting CBCT for proton range estimation with deep learning and deformable image registration.

Physics in medicine and biology
. This study aimed to develop a novel method for generating synthetic CT (sCT) from cone-beam CT (CBCT) of the abdomen/pelvis with bowel gas pockets to facilitate estimation of proton ranges.. CBCT, the same-day repeat CT, and the planning CT (pCT) o...