PURPOSE: To present the technical details of the runner-up model in the open knowledge-based planning (OpenKBP) challenge for the dose-volume histogram (DVH) stream. The model was designed to ensure simple and reproducible training, without the neces...
This study aims to develop a deep learning-based strategy for treatment plan check and verification of high-dose rate (HDR) brachytherapy. A deep neural network was trained to verify the dwell positions and times for a given input brachytherapy isodo...
PURPOSE: We recently described the validation of deep learning-based auto-segmented contour (DC) models for organs at risk (OAR) and clinical target volumes (CTV). In this study, we evaluate the performance of implemented DC models in the clinical ra...
Adaptive-radiation-therapy (ART) is applied to account for anatomical variations observed over the treatment course. Daily or weekly cone-beam computed tomography (CBCT) is commonly used in clinic for patient positioning, but CBCT's inaccuracy in Hou...
PURPOSE: Accurately delineating clinical target volumes (CTV) is essential for completing radiotherapy plans but is time-consuming, labor-intensive, and prone to inter-observer variation. Automating CTV delineation has the benefits of both speeding u...
Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
May 19, 2021
Over the last years, technological innovation in Radiotherapy (RT) led to the introduction of Magnetic Resonance-guided RT (MRgRT) systems. Due to the higher soft tissue contrast compared to on-board CT-based systems, MRgRT is expected to significant...
In post-operative radiotherapy for prostate cancer, precisely contouring the clinical target volume (CTV) to be irradiated is challenging, because the cancerous prostate gland has been surgically removed, so the CTV encompasses the microscopic spread...
PURPOSE: Accurate deformable registration between computed tomography (CT) and cone-beam CT (CBCT) images of pancreatic cancer patients treated with high biologically effective radiation doses is essential to assess changes in organ-at-risk (OAR) loc...
PURPOSE: To improve image quality and computed tomography (CT) number accuracy of daily cone beam CT (CBCT) through a deep learning methodology with generative adversarial network.
Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
May 11, 2021
Advances in artificial intelligence-based methods have led to the development and publication of numerous systems for auto-segmentation in radiotherapy. These systems have the potential to decrease contour variability, which has been associated with ...