A polysaccharide fraction (FMPS) was isolated from floral mushrooms cultivated in Huangshan Mountain, and the rheological properties of FMPS in aqueous solutions were investigated. The FMPS solution showed shear-thinning behavior at 25°C. Dynamic vis...
The ionic polymer-metal composite (IPMC) is a soft material based actuator and sensor and has a promising potential in underwater application. This paper describes a hybrid biomimetic underwater vehicle that uses IPMCs as sensors. Propelled by the en...
Cephalopods (i.e., octopuses and squids) are being looked upon as a source of inspiration for the development of unmanned underwater vehicles. One kind of cephalopod-inspired soft-bodied vehicle developed by the authors entails a hollow, elastic shel...
This paper presents the stability analysis of the leading edge spar of a flapping wing unmanned air vehicle with a compliant spine inserted in it. The compliant spine is a mechanism that was designed to be flexible during the upstroke and stiff durin...
Flexibility plays an important role in fish behavior by enabling high maneuverability for predator avoidance and swimming in turbulent flow. This paper presents a novel flexible fish robot equipped with distributed pressure sensors for flow sensing. ...
Insect wing shapes are diverse and a renowned source of inspiration for the new generation of autonomous flapping vehicles, yet the aerodynamic consequences of varying geometry is not well understood. One of the most defining and aerodynamically sign...
Natural substrates like sand, soil, leaf litter and snow vary widely in penetration resistance. To search for principles of appendage design in robots and animals that permit high performance on such flowable ground, we developed a ground control tec...
Simple mechanical models emulating fish have been used recently to enable targeted study of individual factors contributing to swimming locomotion without the confounding complexity of the whole fish body. Yet, unlike these uniform models, the fish b...
Recent advances in understanding fish locomotion with robotic devices have included the use of biomimetic flapping based and fin undulatory locomotion based robots, treating two locomotions separately from each other. However, in most fish species, p...
Underwater robot designs inspired by the behavior, physiology, and anatomy of fishes can provide enhanced maneuverability, stealth, and energy efficiency. Over the last two decades, robotics researchers have developed and reported a large variety of ...