AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Sequence Analysis, DNA

Showing 131 to 140 of 263 articles

Clear Filters

Multi-trait, Multi-environment Deep Learning Modeling for Genomic-Enabled Prediction of Plant Traits.

G3 (Bethesda, Md.)
Multi-trait and multi-environment data are common in animal and plant breeding programs. However, what is lacking are more powerful statistical models that can exploit the correlation between traits to improve prediction accuracy in the context of ge...

Multi-environment Genomic Prediction of Plant Traits Using Deep Learners With Dense Architecture.

G3 (Bethesda, Md.)
Genomic selection is revolutionizing plant breeding and therefore methods that improve prediction accuracy are useful. For this reason, active research is being conducted to build and test methods from other areas and adapt them to the context of gen...

A deep learning approach to automate refinement of somatic variant calling from cancer sequencing data.

Nature genetics
Cancer genomic analysis requires accurate identification of somatic variants in sequencing data. Manual review to refine somatic variant calls is required as a final step after automated processing. However, manual variant refinement is time-consumin...

A neural network based model effectively predicts enhancers from clinical ATAC-seq samples.

Scientific reports
Enhancers are cis-acting sequences that regulate transcription rates of their target genes in a cell-specific manner and harbor disease-associated sequence variants in cognate cell types. Many complex diseases are associated with enhancer malfunction...

A universal SNP and small-indel variant caller using deep neural networks.

Nature biotechnology
Despite rapid advances in sequencing technologies, accurately calling genetic variants present in an individual genome from billions of short, errorful sequence reads remains challenging. Here we show that a deep convolutional neural network can call...

Machine Learning for detection of viral sequences in human metagenomic datasets.

BMC bioinformatics
BACKGROUND: Detection of highly divergent or yet unknown viruses from metagenomics sequencing datasets is a major bioinformatics challenge. When human samples are sequenced, a large proportion of assembled contigs are classified as "unknown", as conv...

Sequential Integration of Fuzzy Clustering and Expectation Maximization for Transcription Factor Binding Site Identification.

Journal of computational biology : a journal of computational molecular cell biology
The identification of transcription factor binding sites (TFBSs) is a problem for which computational methods offer great hope. Thus far, the expectation maximization (EM) technique has been successfully utilized in finding TFBSs in DNA sequences, bu...

HECIL: A Hybrid Error Correction Algorithm for Long Reads with Iterative Learning.

Scientific reports
Second-generation DNA sequencing techniques generate short reads that can result in fragmented genome assemblies. Third-generation sequencing platforms mitigate this limitation by producing longer reads that span across complex and repetitive regions...

Epigenetic machine learning: utilizing DNA methylation patterns to predict spastic cerebral palsy.

BMC bioinformatics
BACKGROUND: Spastic cerebral palsy (CP) is a leading cause of physical disability. Most people with spastic CP are born with it, but early diagnosis is challenging, and no current biomarker platform readily identifies affected individuals. The aim of...