AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Signal Processing, Computer-Assisted

Showing 91 to 100 of 1836 articles

Clear Filters

A Novel Framework for Quantum-Enhanced Federated Learning with Edge Computing for Advanced Pain Assessment Using ECG Signals via Continuous Wavelet Transform Images.

Sensors (Basel, Switzerland)
Our research introduces a framework that integrates edge computing, quantum transfer learning, and federated learning to revolutionize pain level assessment through ECG signal analysis. The primary focus lies in developing a robust, privacy-preservin...

Imbalanced Power Spectral Generation for Respiratory Rate and Uncertainty Estimations Based on Photoplethysmography Signal.

Sensors (Basel, Switzerland)
Respiratory rate (RR) changes in the elderly can indicate serious diseases. Thus, accurate estimation of RRs for cardiopulmonary function is essential for home health monitoring systems. However, machine learning (ML) algorithm errors embedded in hea...

Deep Learning Approach for Automatic Heartbeat Classification.

Sensors (Basel, Switzerland)
Arrhythmia is an irregularity in the rhythm of the heartbeat, and it is the primary method for detecting cardiac abnormalities. The electrocardiogram (ECG) identifies arrhythmias and is one of the methods used to diagnose cardiac issues. Traditional ...

Hybrid CNN-GRU Models for Improved EEG Motor Imagery Classification.

Sensors (Basel, Switzerland)
Brain-computer interfaces (BCIs) based on electroencephalography (EEG) enable neural activity interpretation for device control, with motor imagery (MI) serving as a key paradigm for decoding imagined movements. Efficient feature extraction from raw ...

Electroencephalogram (EEG) Based Fuzzy Logic and Spiking Neural Networks (FLSNN) for Advanced Multiple Neurological Disorder Diagnosis.

Brain topography
Neurological disorders are a major global health concern that have a substantial impact on death rates and quality of life. accurately identifying a number of diseases Due to inherent data uncertainties and Electroencephalogram (EEG) pattern overlap,...

Machine learning based seizure classification and digital biosignal analysis of ECT seizures.

Scientific reports
While artificial intelligence has received considerable attention in various medical fields, its application in the field of electroconvulsive therapy (ECT) remains rather limited. With the advent of digital seizure collection systems, the developmen...

EffNet: an efficient one-dimensional convolutional neural networks for efficient classification of long-term ECG fragments.

Biomedical physics & engineering express
Early Diagnosis of Cardiovascular disease (CVD) is essential to prevent a person from death in case of a cardiac arrhythmia. Automated ECG classification is required because manual classification by cardiologists is laborious, time-consuming, and pro...

Ventricular Arrhythmia Classification Using Similarity Maps and Hierarchical Multi-Stream Deep Learning.

IEEE transactions on bio-medical engineering
OBJECTIVE: Ventricular arrhythmias are the primary arrhythmias that cause sudden cardiac death. We address the problem of classification between ventricular tachycardia (VT), ventricular fibrillation (VF) and non-ventricular rhythms (NVR).

KID-PPG: Knowledge Informed Deep Learning for Extracting Heart Rate From a Smartwatch.

IEEE transactions on bio-medical engineering
Accurate extraction of heart rate from photoplethysmography (PPG) signals remains challenging due to motion artifacts and signal degradation. Although deep learning methods trained as a data-driven inference problem offer promising solutions, they of...

Parkinson's disease tremor prediction towards real-time suppression: A self-attention deep temporal convolutional network approach.

Computers in biology and medicine
Accurate prediction of Parkinson's disease tremor (PDT) is crucial for developing assistive technologies; however, this is challenging due to the nonlinear, stochastic, and nonstationary characteristics of PDT, which substantially vary among patients...