IEEE transactions on bio-medical engineering
Mar 21, 2025
OBJECTIVE: Targeted blood-brain barrier (BBB) opening using focused ultrasound (FUS) and micro/nanobubbles is a promising method for brain drug delivery. This study aims to explore the feasibility of multiple instance learning (MIL) in accurate and f...
IEEE transactions on bio-medical engineering
Mar 21, 2025
OBJECTIVE: To develop a novel method for improved screening of sleep apnea in home environments, focusing on reliable estimation of the Apnea-Hypopnea Index (AHI) without the need for highly precise event localization.
IEEE transactions on bio-medical engineering
Mar 21, 2025
This study introduces an innovative approach combining deep-learning techniques with classical physics-based electrocardiographic imaging (ECGI) methods. Our objective is to enhance the accuracy and robustness of ECGI reconstructions. We reshape the ...
IEEE transactions on bio-medical engineering
Mar 21, 2025
For people with Type 1 diabetes (T1D), accurate blood glucose (BG) forecasting is crucial for the effective delivery of insulin by Artificial Pancreas (AP) systems. Deep learning frameworks like Long Short-Term-Memory (LSTM) have been widely used to ...
In the field of clinical neurology, automated detection of epileptic seizures based on electroencephalogram (EEG) signals has the potential to significantly accelerate the diagnosis of epilepsy. This rapid and accurate diagnosis enables doctors to pr...
Cardiovascular diseases are non-communicable diseases that are considered the leading cause of death worldwide accounting for 17.9 million fatalities. Auscultation of heart sounds is the most common and valuable way of diagnosing heart diseases. Norm...
Assessing fetal health traditionally involves techniques like echocardiography, which require skilled professionals and specialized equipment, making them unsuitable for low-resource settings. An emerging alternative is Phonocardiography (PCG), which...
The analysis of cognitive patterns through brain signals offers critical insights into human cognition, including perception, attention, memory, and decision-making. However, accurately classifying these signals remains a challenge due to their inher...
The availability of large-scale electrocardiogram (ECG) databases and advancements in machine learning have facilitated the development of automated diagnostic systems for cardiac arrhythmias. Deep learning models, despite their potential for high ac...
- In recent times, the electrocardiogram (ECG) has been considered as a significant and effective screening mode in clinical practice to assess cardiac arrhythmias. Precise feature extraction and classification are considered as essential concerns in...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.