AIMC Topic: Signal Processing, Computer-Assisted

Clear Filters Showing 151 to 160 of 1951 articles

RVDLAHA: An RISC-V DLA Hardware Architecture for On-Device Real-Time Seizure Detection and Personalization in Wearable Applications.

IEEE transactions on biomedical circuits and systems
Epilepsy is a globally distributed chronic neurological disorder that may pose a threat to life without warning. Therefore, the use of wearable devices for real-time detection and treatment of epilepsy is crucial. Additionally, personalizing disease ...

AI Accelerator With Ultralightweight Time-Period CNN-Based Model for Arrhythmia Classification.

IEEE transactions on biomedical circuits and systems
This work proposes a classification system for arrhythmias, aiming to enhance the efficiency of the diagnostic process for cardiologists. The proposed algorithm includes a naive preprocessing procedure for electrocardiography (ECG) data applicable to...

Towards Hardware Supported Domain Generalization in DNN-Based Edge Computing Devices for Health Monitoring.

IEEE transactions on biomedical circuits and systems
Deep neural network (DNN) models have shown remarkable success in many real-world scenarios, such as object detection and classification. Unfortunately, these models are not yet widely adopted in health monitoring due to exceptionally high requiremen...

MorphBungee: A 65-nm 7.2-mm 27-µJ/Image Digital Edge Neuromorphic Chip With on-Chip 802-Frame/s Multi-Layer Spiking Neural Network Learning.

IEEE transactions on biomedical circuits and systems
This paper presents a digital edge neuromorphic spiking neural network (SNN) processor chip for a variety of edge intelligent cognitive applications. This processor allows high-speed, high-accuracy and fully on-chip spike-timing-based multi-layer SNN...

Supervised Contrastive Learning Framework and Hardware Implementation of Learned ResNet for Real-Time Respiratory Sound Classification.

IEEE transactions on biomedical circuits and systems
This paper presents a supervised contrastive learning (SCL) framework for respiratory sound classification and the hardware implementation of learned ResNet on field programmable gate array (FPGA) for real-time monitoring. At the algorithmic level, m...

PhysioEx: a new Python library for explainable sleep staging through deep learning.

Physiological measurement
Sleep staging is a crucial task in clinical and research contexts for diagnosing and understanding sleep disorders. This work introduces PhysioEx (Physiological Signal Explainer), a Python library designed to support the analysis of sleep stages usin...

Pseudo-HFOs Elimination in iEEG Recordings Using a Robust Residual-Based Dictionary Learning Framework.

IEEE journal of biomedical and health informatics
High-frequency oscillations (HFOs) in intracranial EEG (iEEG) recordings are critical biomarkers for localizing the seizure onset zone (SOZ) in patients with focal refractory epilepsy. Despite their clinical significance, HFO analysis is often compro...

WaveSleepNet: An Interpretable Network for Expert-Like Sleep Staging.

IEEE journal of biomedical and health informatics
Although deep learning algorithms have proven their efficiency in automatic sleep staging, their "black-box" nature has limited their clinical adoption. In this study, we propose WaveSleepNet, an interpretable neural network for sleep staging that re...

Multiclass Classification Framework of Motor Imagery EEG by Riemannian Geometry Networks.

IEEE journal of biomedical and health informatics
In motor imagery (MI) tasks for brain computer interfaces (BCIs), the spatial covariance matrix (SCM) of electroencephalogram (EEG) signals plays a critical role in accurate classification. Given that SCMs are symmetric positive definite (SPD), Riema...

SleepECG-Net: Explainable Deep Learning Approach With ECG for Pediatric Sleep Apnea Diagnosis.

IEEE journal of biomedical and health informatics
Obstructive sleep apnea (OSA) in children is a prevalent and serious respiratory condition linked to cardiovascular morbidity. Polysomnography, the standard diagnostic approach, faces challenges in accessibility and complexity, leading to underdiagno...