Neurologists often face challenges in identifying epileptic activities within multichannel EEG recordings, requiring extensive hours of analysis. Computer-aided diagnosis systems have been proposed to reduce manual inspection of EEG signals by neurol...
Monitoring cerebral oxygenation and metabolism, using a combination of invasive and non-invasive sensors, is vital due to frequent disruptions in hemodynamic regulation across various diseases. These sensors generate continuous high-frequency data st...
Journal of electromyography and kinesiology : official journal of the International Society of Electrophysiological Kinesiology
Dec 19, 2024
This study proposed a U-Net based partial convolutional time-domain model for a real-time high-density surface electromyography (HD-sEMG) decomposition. The model combines U-Net and a separation block containing partial convolution, aiming to efficie...
One of the most promising applications for electroencephalogram (EEG)-based brain-computer interfaces (BCIs) is motor rehabilitation through motor imagery (MI) tasks. However, current MI training requires physical attendance, while remote MI training...
Electrocardiogram (ECG) signals contain complex and diverse features, serving as a crucial basis for arrhythmia diagnosis. The subtle differences in characteristics among various types of arrhythmias, coupled with class imbalance issues in datasets, ...
Analytical methods : advancing methods and applications
Dec 19, 2024
PPG signals are a new means of non-invasive detection of blood glucose, but there are still shortcomings of poor time adaptability and low prediction accuracy of blood glucose quantitative models. Few studies discuss prediction accuracy in the case o...
Traditional tactile brain-computer interfaces (BCIs), particularly those based on steady-state somatosensory-evoked potentials, face challenges such as lower accuracy, reduced bit rates, and the need for spatially distant stimulation points. In contr...
The automatic detection of arrhythmia is of primary importance due to the huge number of victims caused worldwide by cardiovascular diseases. To this aim, several deep learning approaches have been recently proposed to automatically classify heartbea...
BACKGROUND: Fast-ripples (FR) are short (∼10 ms) high-frequency oscillations (HFO) between 200 and 600 Hz that are helpful in epilepsy to identify the epileptogenic zone. Our aim is to propose a new method to detect FR that had to be efficient for in...
This systematic literature review explores the intersection of neuroscience and deep learning in the context of decoding motor imagery Electroencephalogram (EEG) signals to enhance the quality of life for individuals with motor disabilities. Currentl...