Journal of the Optical Society of America. A, Optics, image science, and vision
39889019
As we all know, suppressing noise while maintaining detailed structure has been a challenging problem in the field of image enhancement, especially for color retinal images. In this paper, a dual-channel lightweight GAN named dilated shuffle generati...
Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
39904265
Magnetic Resonance Imaging (MRI) generates medical images of multiple sequences, i.e., multimodal, from different contrasts. However, noise will reduce the quality of MR images, and then affect the doctor's diagnosis of diseases. Existing filtering m...
Choroid plexus (CP) is an important brain structure that produces cerebrospinal fluid (CSF). CP perfusion has been studied using multi-delay arterial spin labeling (MD-ASL) in adults but not in pediatric populations due to the challenge of small CP s...
Quantification of tissue stiffness with magnetic resonance elastography (MRE) is an inverse problem that is sensitive to noise. Conventional methods for the purpose include direct inversion (DI) and local frequency estimation (LFE). In this study, we...
Two-photon fluorescence (TPF) imaging opens a new avenue to achieve high resolution at extended penetration depths. However, it is difficult for conventional TPF imaging systems to simultaneously achieve high resolution and speed. In this work, we de...
Denoising artifacts, such as noise from muscle or cardiac activity, is a crucial and ubiquitous concern in neurophysiological signal processing, particularly for enhancing the signal-to-noise ratio in electroencephalograph (EEG) analysis. Novel metho...
Computed tomography (CT) is a crucial medical imaging technique which uses x-ray radiation to identify cancer tissues. Since radiation poses a significant health risk, low dose acquisition procedures need to be adopted. However, low-dose CT (LDCT) ca...
OBJECTIVE: This study evaluated the effect of an accelerated three-dimensional (3D) T1-weighted pediatric brain MRI protocol using a deep learning (DL)-based reconstruction algorithm on scan time and image quality.
Purpose To evaluate the performance of Physics-Informed Autoencoder (PIA), a self-supervised deep learning model, in measuring tissue-based biomarkers for prostate cancer (PCa) using hybrid multidimensional MRI. Materials and Methods This retrospecti...
The purpose of this study was to accelerate MR cholangiopancreatography (MRCP) acquisitions using deep learning-based (DL) reconstruction at 3 and 0.55 T. A total of 35 healthy volunteers underwent conventional twofold accelerated MRCP scans at field...