AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Single Embryo Transfer

Showing 1 to 10 of 14 articles

Clear Filters

Prediction of clinical pregnancy outcome after single fresh blastocyst transfer during in vitro fertilization: an ensemble learning perspective.

Human fertility (Cambridge, England)
To establish a predictive model for clinical pregnancy outcomes following the transfer of a single fresh blastocyst in vitro fertilization (IVF). 615 patients (492 in training set and 123 in test set) who underwent the first single and fresh blastocy...

Clinical outcomes of single blastocyst transfer with machine learning guided noninvasive chromosome screening grading system in infertile patients.

Reproductive biology and endocrinology : RB&E
BACKGROUND: Prospective observational studies have demonstrated that the machine learning (ML) -guided noninvasive chromosome screening (NICS) grading system, which we called the noninvasive chromosome screening-artificial intelligence (NICS-AI) grad...

BlastAssist: a deep learning pipeline to measure interpretable features of human embryos.

Human reproduction (Oxford, England)
STUDY QUESTION: Can the BlastAssist deep learning pipeline perform comparably to or outperform human experts and embryologists at measuring interpretable, clinically relevant features of human embryos in IVF?

Using deep learning to predict the outcome of live birth from more than 10,000 embryo data.

BMC pregnancy and childbirth
BACKGROUND: Recently, the combination of deep learning and time-lapse imaging provides an objective, standard and scientific solution for embryo selection. However, the reported studies were based on blastocyst formation or clinical pregnancy as the ...

Deep learning neural network analysis of human blastocyst expansion from time-lapse image files.

Reproductive biomedicine online
RESEARCH QUESTION: Can artificial intelligence (AI) discriminate a blastocyst's cellular area from unedited time-lapse image files using semantic segmentation and a deep learning optimized U-Net architecture for use in selecting single blastocysts fo...

Individualized embryo selection strategy developed by stacking machine learning model for better in vitro fertilization outcomes: an application study.

Reproductive biology and endocrinology : RB&E
BACKGROUND: To minimize the rate of in vitro fertilization (IVF)- associated multiple-embryo gestation, significant efforts have been made. Previous studies related to machine learning in IVF mainly focused on selecting the top-quality embryos to imp...

A machine learning system with reinforcement capacity for predicting the fate of an ART embryo.

Systems biology in reproductive medicine
The aim of this work was o construct a score issued from a machine learning system with self-improvement capacity able to predict the fate of an ART embryo incubated in a time lapse monitoring (TLM) system. A retrospective study was performed. For th...