AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Software

Showing 21 to 30 of 3424 articles

Clear Filters

IDP-EDL: enhancing intrinsically disordered protein prediction by combining protein language model and ensemble deep learning.

Briefings in bioinformatics
Identification of intrinsically disordered regions (IDRs) in proteins is essential for understanding fundamental cellular processes. The IDRs can be divided into long disordered regions (LDRs) and short disordered regions (SDRs) according to their le...

A multi-view graph convolutional network framework based on adaptive adjacency matrix and multi-strategy fusion mechanism for identifying spatial domains.

Bioinformatics (Oxford, England)
MOTIVATION: Spatial transcriptomics (ST) addresses the loss of spatial context in single-cell RNA-sequencing by simultaneously capturing gene expression and spatial location information. A critical task of ST is the identification of spatial domains....

GeOKG: geometry-aware knowledge graph embedding for Gene Ontology and genes.

Bioinformatics (Oxford, England)
MOTIVATION: Leveraging deep learning for the representation learning of Gene Ontology (GO) and Gene Ontology Annotation (GOA) holds significant promise for enhancing downstream biological tasks such as protein-protein interaction prediction. Prior ap...

FactVAE: a factorized variational autoencoder for single-cell multi-omics data integration analysis.

Briefings in bioinformatics
Single-cell multi-omics technologies have revolutionized the study of cell states and functions by simultaneously profiling multiple molecular layers within individual cells. However, existing methods for integrating these data struggle to preserve c...

Getting Started with Machine Learning for Experimental Biochemists and Other Molecular Scientists.

Current protocols
Machine learning (ML) is rapidly gaining traction in many areas of experimental molecular science for elucidating relationships and patterns in large or complex data sets. Historically, ML was largely the preserve of those with specialized training i...

AI-driven cybersecurity framework for software development based on the ANN-ISM paradigm.

Scientific reports
With the increasing reliance on software applications, cybersecurity threats have become a critical concern for developers and organizations. The answer to this vulnerability is AI systems, which help us adapt a little better, as traditional measures...

GOReverseLookup: A gene ontology reverse lookup tool.

Computers in biology and medicine
BACKGROUND AND OBJECTIVE: The Gene Ontology (GO) project has been pivotal in providing a structured framework for characterizing genes and annotating them to specific biological concepts. While traditional gene annotation primarily focuses on mapping...

DTreePred: an online viewer based on machine learning for pathogenicity prediction of genomic variants.

BMC bioinformatics
BACKGROUND: A significant challenge in precision medicine is confidently identifying mutations detected in sequencing processes that play roles in disease treatment or diagnosis. Furthermore, the lack of representativeness of single nucleotide varian...

argNorm: normalization of antibiotic resistance gene annotations to the Antibiotic Resistance Ontology (ARO).

Bioinformatics (Oxford, England)
SUMMARY: Currently available and frequently used tools for annotating antibiotic resistance genes (ARGs) in genomes and metagenomes provide results using inconsistent nomenclature. This makes the comparison of different ARG annotation outputs challen...

ProtNote: a multimodal method for protein-function annotation.

Bioinformatics (Oxford, England)
MOTIVATION: Understanding the protein sequence-function relationship is essential for advancing protein biology and engineering. However, <1% of known protein sequences have human-verified functions. While deep-learning methods have demonstrated prom...