Focal adhesion kinase (FAK) is a critical drug target implicated in various disease pathways, including hematological malignancies and breast cancer. Therefore, identifying FAK inhibitors with novel scaffolds could offer new opportunities for develop...
Experimental biology and medicine (Maywood, N.J.)
Mar 19, 2025
Opioids exert their analgesic effect by binding to the µ opioid receptor (MOR), which initiates a downstream signaling pathway, eventually inhibiting pain transmission in the spinal cord. However, current opioids are addictive, often leading to overd...
This study systematically investigates the structure-activity relationships of 30 Ti-phenoxy-imine (FI-Ti) catalysts using machine learning (ML) approaches. Among the tested algorithms, XGBoost demonstrated superior predictive performance, achieving ...
Journal of agricultural and food chemistry
Feb 27, 2025
A large number of mycotoxins and related fungal metabolites have not been assessed in terms of their toxicological impacts. Current methodologies often prioritize specific target families, neglecting the complexity and presence of co-occurring compou...
A key molecular dysfunction in heart failure is the reduced activity of the cardiac sarcoplasmic reticulum Ca-ATPase (SERCA2a) in cardiac muscle cells. Reactivating SERCA2a improves cardiac function in heart failure models, making it a validated targ...
The global impact of SARS-CoV-2 has highlighted the urgent need for novel antiviral therapies. This study integrates combinatorial chemistry, molecular docking, and deep learning to design, evaluate and synthesize new pyrazole derivatives as potentia...
Adenosine receptors (A, A, A, A) play critical roles in cellular signaling and are implicated in various physiological and pathological processes, including inflammations and cancer. The main aim of this research was to investigate structure-activity...
Journal of chemical information and modeling
Jan 7, 2025
Antioxidant peptides (AOPs) hold great promise for mitigating oxidative-stress-related diseases, but their discovery is hindered by inefficient and time-consuming traditional methods. To address this, we developed an innovative framework combining ma...
Computational methods for predicting protein function are of great significance in understanding biological mechanisms and treating complex diseases. However, existing computational approaches of protein function prediction lack interpretability, mak...
Lipid nanoparticles (LNPs) have proven effective in mRNA delivery, as evidenced by COVID-19 vaccines. Its key ingredient, ionizable lipids, is traditionally optimized by inefficient and costly experimental screening. This study leverages artificial i...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.