AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Ultrasonography, Mammary

Showing 1 to 10 of 204 articles

Clear Filters

Weakly Supervised Breast Ultrasound Image Segmentation Based on Image Selection.

Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Automatic segmentation in Breast Ultrasound (BUS) imaging is vital to BUS computer-aided diagnostic systems. Fully supervised learning approaches can attain high accuracy, yet they depend on pixel-level annotations that are challenging to obtain. As ...

A comparison between Deep Learning architectures for the assessment of breast tumor segmentation using VSI ultrasound protocol.

Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Automatic breast tumor ultrasound segmentation is one of the most critical components in the development of tools for breast cancer diagnosis. Several deep learning algorithms have been tested with public and private datasets but none of them has bee...

Enhancing Specificity in Predicting Axillary Lymph Node Metastasis in Breast Cancer through an Interpretable Machine Learning Model with CEM and Ultrasound Integration.

Technology in cancer research & treatment
IntroductionThe study aims to evaluate the performance of an interpretable machine learning model in predicting preoperative axillary lymph node metastasis using primary breast cancer and lymph node features derived from contrast-enhanced mammography...

Flip Learning: Weakly supervised erase to segment nodules in breast ultrasound.

Medical image analysis
Accurate segmentation of nodules in both 2D breast ultrasound (BUS) and 3D automated breast ultrasound (ABUS) is crucial for clinical diagnosis and treatment planning. Therefore, developing an automated system for nodule segmentation can enhance user...

Multi-center study: ultrasound-based deep learning features for predicting Ki-67 expression in breast cancer.

Scientific reports
Applying deep learning algorithms to mine ultrasound features of breast cancer and construct a machine learning model that accurately predicts Ki-67 expression level. This multi-center retrospective study analyzed clinical and ultrasound data from 92...

Variational mode directed deep learning framework for breast lesion classification using ultrasound imaging.

Scientific reports
Breast cancer is the most prevalent cancer and the second cause of cancer related death among women in the United States. Accurate and early detection of breast cancer can reduce the number of mortalities. Recent works explore deep learning technique...

Using artificial intelligence system for assisting the classification of breast ultrasound glandular tissue components in dense breast tissue.

Scientific reports
To investigate the potential of employing artificial intelligence (AI) -driven breast ultrasound analysis models for the classification of glandular tissue components (GTC) in dense breast tissue. A total of 1,848 healthy women with mammograms classi...

FET-UNet: Merging CNN and transformer architectures for superior breast ultrasound image segmentation.

Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
PURPOSE: Breast cancer remains a significant cause of mortality among women globally, highlighting the critical need for accurate diagnosis. Although Convolutional Neural Networks (CNNs) have shown effectiveness in segmenting breast ultrasound images...

Hierarchical diagnosis of breast phyllodes tumors enabled by deep learning of ultrasound images: a retrospective multi-center study.

Cancer imaging : the official publication of the International Cancer Imaging Society
OBJECTIVE: Phyllodes tumors (PTs) are rare breast tumors with high recurrence rates, current methods relying on post-resection pathology often delay detection and require further surgery. We propose a deep-learning-based Phyllodes Tumors Hierarchical...

Optimizing breast lesions diagnosis and decision-making with a deep learning fusion model integrating ultrasound and mammography: a dual-center retrospective study.

Breast cancer research : BCR
BACKGROUND: This study aimed to develop a BI-RADS network (DL-UM) via integrating ultrasound (US) and mammography (MG) images and explore its performance in improving breast lesion diagnosis and management when collaborating with radiologists, partic...