OBJECTIVE: To develop explainable machine learning models that integrate multimodal imaging and pathological biomarkers to predict axillary lymph node metastasis (ALNM) in breast cancer patients and assess their clinical utility.
The purpose of this study was to create and validate an ultrasound-based graph convolutional network (US-based GCN) model for the prediction of axillary lymph node metastasis (ALNM) in patients with breast cancer. A total of 820 eligible patients wit...
This study sought to develop a radiomics model capable of predicting axillary lymph node metastasis (ALNM) in patients with invasive breast cancer (IBC) based on dual-sequence magnetic resonance imaging(MRI) of diffusion-weighted imaging (DWI) and dy...
To develop and validate a machine learning-based prediction model to predict axillary lymph node (ALN) metastasis in triple negative breast cancer (TNBC) patients using magnetic resonance imaging (MRI) and clinical characteristics. This retrospective...
BACKGROUND: In the prognosis of breast cancer, the status of axillary lymph nodes (ALN) is critically important. While traditional axillary lymph node dissection (ALND) provides comprehensive information, it is associated with high risks. Sentinel ly...
The presence of axillary lymph node metastasis (ALNM) in breast cancer patients is an important factor in deciding whether to have axillary surgery or pursue alternative treatments. Based on axillary ultrasound (US) and histopathologic data, three gr...
Technology in cancer research & treatment
Apr 17, 2025
IntroductionThe study aims to evaluate the performance of an interpretable machine learning model in predicting preoperative axillary lymph node metastasis using primary breast cancer and lymph node features derived from contrast-enhanced mammography...
Cancer imaging : the official publication of the International Cancer Imaging Society
Mar 31, 2025
BACKGROUND: To perform a systematic review and meta-analysis that assesses the diagnostic performance of deep learning algorithms applied to breast MRI for predicting axillary lymph nodes metastases in patients of breast cancer.
OBJECTIVE: This study explores the value of combining intratumoral and peritumoral radiomics features from ultrasound imaging with clinical characteristics to assess axillary lymph node burden in breast cancer patients.
Contrast-enhanced ultrasound (CEUS) plays a pivotal role in the diagnosis of primary breast cancer and in axillary lymph node (ALN) metastasis. However, the imaging features that are clinically crucial for lymph node metastasis have not been fully el...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.