AIMC Topic: Visual Acuity

Clear Filters Showing 51 to 60 of 166 articles

Opportunities for Improving Glaucoma Clinical Trials via Deep Learning-Based Identification of Patients with Low Visual Field Variability.

Ophthalmology. Glaucoma
PURPOSE: Develop and evaluate the performance of a deep learning model (DLM) that forecasts eyes with low future visual field (VF) variability, and study the impact of using this DLM on sample size requirements for neuroprotective trials.

Suitability of machine learning for atrophy and fibrosis development in neovascular age-related macular degeneration.

Acta ophthalmologica
PURPOSE: To assess the suitability of machine learning (ML) techniques in predicting the development of fibrosis and atrophy in patients with neovascular age-related macular degeneration (nAMD), receiving anti-VEGF treatment over a 36-month period.

Predicting Visual Acuity Responses to Anti-VEGF Treatment in the Comparison of Age-related Macular Degeneration Treatments Trials Using Machine Learning.

Ophthalmology. Retina
PURPOSE: To evaluate multiple machine learning (ML) models for predicting 2-year visual acuity (VA) responses to anti-vascular endothelial growth factor (anti-VEGF) treatment in the Comparison of Age-related Macular Degeneration (AMD) Treatments Tria...

Performance of retinal fluid monitoring in OCT imaging by automated deep learning versus human expert grading in neovascular AMD.

Eye (London, England)
PURPOSE: To evaluate the reliability of automated fluid detection in identifying retinal fluid activity in OCT scans of patients treated with anti-VEGF therapy for neovascular age-related macular degeneration by correlating human expert and automated...

An AI model to estimate visual acuity based solely on cross-sectional OCT imaging of various diseases.

Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie
PURPOSE: To develop an artificial intelligence (AI) model for estimating best-corrected visual acuity (BCVA) using horizontal and vertical optical coherence tomography (OCT) scans of various retinal diseases and examine factors associated with its ac...

Efficacy and accuracy of artificial intelligence to overlay multimodal images from different optical instruments in patients with retinitis pigmentosa.

Clinical & experimental ophthalmology
BACKGROUND: Retinitis pigmentosa (RP) represents a group of progressive, genetically heterogenous blinding diseases. Recently, relationships between measures of retinal function and structure are needed to help identify outcome measures or biomarkers...

Cuttlefish eye-inspired artificial vision for high-quality imaging under uneven illumination conditions.

Science robotics
With the rise of mobile robotics, including self-driving automobiles and drones, developing artificial vision for high-contrast and high-acuity imaging in vertically uneven illumination conditions has become an important goal. In such situations, bal...

KFWC: A Knowledge-Driven Deep Learning Model for Fine-grained Classification of Wet-AMD.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVES: Automated diagnosis using deep neural networks can help ophthalmologists detect the blinding eye disease wet Age-related Macular Degeneration (AMD). Wet-AMD has two similar subtypes, Neovascular AMD and Polypoidal Choroidal...