PRCIS: The AI model, enhanced by SMOTE to balance data classes, accurately predicted visual field deterioration in patients with myopic normal tension glaucoma. Using SHAP analysis, the key variables driving disease progression were identified.
BACKGROUND/AIMS: To assess the performance of deep-learning (DL) models for prediction of conversion to normal-tension glaucoma (NTG) in normotensive glaucoma suspect (GS) patients.
We aimed to classify early normal-tension glaucoma (NTG) and glaucoma suspect (GS) using Bruch's membrane opening-minimum rim width (BMO-MRW), peripapillary retinal nerve fiber layer (RNFL), and the color classification of RNFL based on a deep-learni...
BACKGROUND/AIMS: To compare intraocular pressure (IOP) measurements using a prototype smartphone tonometer with other tonometers used in clinical practice.
PURPOSE: To assess the performance of machine learning classifiers for prediction of progression of normal-tension glaucoma (NTG) in young myopic patients.
PURPOSE: To determine whether a machine learning technique called Kalman filtering (KF) can accurately forecast future values of mean deviation (MD), pattern standard deviation, and intraocular pressure for patients with normal tension glaucoma (NTG)...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.