AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Visual Fields

Showing 41 to 50 of 116 articles

Clear Filters

Learning spectral initialization for phase retrieval via deep neural networks.

Applied optics
Phase retrieval (PR) arises from the lack of phase information in the measures recorded by optical sensors. Phase masks that modulate the optical field and reduce ambiguities in the PR problem by producing redundancy in coded diffraction patterns (CD...

A Deep Learning Approach to Improve Retinal Structural Predictions and Aid Glaucoma Neuroprotective Clinical Trial Design.

Ophthalmology. Glaucoma
PURPOSE: To investigate the efficacy of a deep learning regression method to predict macula ganglion cell-inner plexiform layer (GCIPL) and optic nerve head (ONH) retinal nerve fiber layer (RNFL) thickness for use in glaucoma neuroprotection clinical...

Deep learning: applications in retinal and optic nerve diseases.

Clinical & experimental optometry
Deep learning (DL) represents a paradigm-shifting, burgeoning field of research with emerging clinical applications in optometry. Unlike traditional programming, which relies on human-set specific rules, DL works by exposing the algorithm to a large ...

Pointwise Visual Field Estimation From Optical Coherence Tomography in Glaucoma Using Deep Learning.

Translational vision science & technology
PURPOSE: Standard automated perimetry is the gold standard to monitor visual field (VF) loss in glaucoma management, but it is prone to intrasubject variability. We trained and validated a customized deep learning (DL) regression model with Xception ...

Deep Learning-Based Noise Reduction Improves Optical Coherence Tomography Angiography Imaging of Radial Peripapillary Capillaries in Advanced Glaucoma.

Current eye research
PURPOSE: We applied deep learning-based noise reduction (NR) to optical coherence tomography-angiography (OCTA) images of the radial peripapillary capillaries (RPCs) in eyes with glaucoma and investigated the usefulness of this method as an objective...

Evaluation of Generative Adversarial Networks for High-Resolution Synthetic Image Generation of Circumpapillary Optical Coherence Tomography Images for Glaucoma.

JAMA ophthalmology
IMPORTANCE: Deep learning (DL) networks require large data sets for training, which can be challenging to collect clinically. Generative models could be used to generate large numbers of synthetic optical coherence tomography (OCT) images to train su...

Deep Learning-Assisted Detection of Glaucoma Progression in Spectral-Domain OCT.

Ophthalmology. Glaucoma
PURPOSE: To develop and validate a deep learning (DL) model for detection of glaucoma progression using spectral-domain (SD)-OCT measurements of retinal nerve fiber layer (RNFL) thickness.

Deep Learning Estimation of 10-2 Visual Field Map Based on Circumpapillary Retinal Nerve Fiber Layer Thickness Measurements.

American journal of ophthalmology
PURPOSE: To estimate central 10-degree visual field (VF) map from spectral-domain optical coherence tomography (SD-OCT) retinal nerve fiber layer thickness (RNFL) measurements in glaucoma with artificial intelligence.

Deep learning approaches to predict 10-2 visual field from wide-field swept-source optical coherence tomography en face images in glaucoma.

Scientific reports
Close monitoring of central visual field (VF) defects with 10-2 VF helps prevent blindness in glaucoma. We aimed to develop a deep learning model to predict 10-2 VF from wide-field swept-source optical coherence tomography (SS-OCT) images. Macular ga...

Predicting 60-4 visual field tests using 3D facial reconstruction.

The British journal of ophthalmology
BACKGROUND: Despite, the potential clinical utility of 60-4 visual fields, they are not frequently used in clinical practice partly, due to the purported impact of facial contour on field defects. The purpose of this study was to design and test an a...