Glioblastoma is the most common malignant brain parenchymal tumor yet remains challenging to treat. The current standard of care-resection and chemoradiation-is limited in part due to the genetic heterogeneity of glioblastoma. Previous studies have i...
OBJECTIVE: The aim of this study was to build a convolutional neural network (CNN)-based prediction model of glioblastoma (GBM) molecular subtype diagnosis and prognosis with multimodal features.
We aimed to systematically review and meta-analyze the predictive value of magnetic resonance imaging (MRI)-derived radiomics/end-to-end deep learning (DL) models in predicting glioma alpha thalassemia/mental retardation syndrome X-linked (ATRX) stat...