Identifying new anti-seizure medications (ASMs) is difficult due to limitations in animal-based assays. Zebrafish (Danio rerio) serve as a model for chemical and genetic seizures, but current methods for detecting anti-seizure responses are limited b...
BACKGROUND: High-throughput behavioral analysis is important for drug discovery, toxicological studies, and the modeling of neurological disorders such as autism and epilepsy. Zebrafish embryos and larvae are ideal for such applications because they ...
Epilepsy, a neurological disorder causing recurring seizures, is often studied in zebrafish by exposing animals to pentylenetetrazol (PTZ), which induces clonic- and tonic-like behaviors. While adult zebrafish seizure-like behaviors are well characte...
Municipal wastewater substantially contributes to aquatic ecological risks. Assessing the toxicity of municipal wastewater through dose-effect curves is challenging owing to the time-consuming, labor-intensive, and costly nature of biological assays....
The 5' UTRs of mRNAs are critical for translation regulation during development, but their in vivo regulatory features are poorly characterized. Here, we report the regulatory landscape of 5' UTRs during early zebrafish embryogenesis using a massivel...
Accurate analysis of anxiety behaviors in animal models is pivotal for advancing neuroscience research and drug discovery. This study compares the potential of DeepLabCut, ZebraLab, and machine learning models to analyze anxiety-related behaviors in ...
Water pollution poses a significant risk to the environment and human health, necessitating the development of innovative detection methods. In this study, a series of representative psychoactive compounds were selected as model pollutants, and a new...
Behavior is fundamental to neuroscience research, providing insights into the mechanisms underlying thoughts, actions and responses. Various model organisms, including mice, flies, and fish, are employed to understand these mechanisms. Zebrafish, in ...
New approach methodologies (NAMs) offer information tailored to the intended application while reducing the use of animals. NAMs aim to develop quantitative structure-activity relationship (QSAR) and quantitive-Read-Across structure-activity relation...
Traditional methods for identifying endocrine-disrupting chemicals (EDCs) that activate androgen receptors (AR) are costly, time-consuming, and low-throughput. This study developed a knowledge-based deep neural network model (AR-DNN) to predict AR-me...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.