AI Medical Compendium Journal:
Accident; analysis and prevention

Showing 21 to 30 of 137 articles

Investigating streetscape environmental characteristics associated with road traffic crashes using street view imagery and computer vision.

Accident; analysis and prevention
Examining the relationship between streetscape features and road traffic crashes is vital for enhancing roadway safety. Traditional field surveys are often inefficient and lack comprehensive spatial coverage. Leveraging street view images (SVIs) and ...

Gender disparities in rural motorcycle accidents: A neural network analysis of travel behavior impact.

Accident; analysis and prevention
Rural road accidents involving motorcycle riders present a formidable challenge to road safety globally. This study offers a comprehensive gender-based comparative analysis of rural road accidents among motorcycle riders, aimed at illuminating factor...

Decision-making of autonomous vehicles in interactions with jaywalkers: A risk-aware deep reinforcement learning approach.

Accident; analysis and prevention
Jaywalking, as a hazardous crossing behavior, leaves little time for drivers to anticipate and respond promptly, resulting in high crossing risks. The prevalence of Autonomous Vehicle (AV) technologies has offered new solutions for mitigating jaywalk...

Recognizing and explaining driving stress using a Shapley additive explanation model by fusing EEG and behavior signals.

Accident; analysis and prevention
Driving stress is a critical factor leading to road traffic accidents. Despite numerous studies that have been conducted on driving stress recognition, most of them only focus on accuracy improvement without taking model interpretability into account...

Predicting lane change maneuver and associated collision risks based on multi-task learning.

Accident; analysis and prevention
The lane-changing (LC) maneuver of vehicles significantly impacts highway traffic safety. Therefore, proactively predicting LC maneuver and associated collision risk is of paramount importance. However, most of the previous LC risk prediction researc...

Unraveling the determinants of traffic incident duration: A causal investigation using the framework of causal forests with debiased machine learning.

Accident; analysis and prevention
Predicting the duration of traffic incidents is challenging due to their stochastic nature. Accurate predictions can greatly benefit end-users by informing their route choices and safety warnings, while helping traffic operation managers more effecti...

Uncertainty-aware probabilistic graph neural networks for road-level traffic crash prediction.

Accident; analysis and prevention
Traffic crashes present substantial challenges to human safety and socio-economic development in urban areas. Developing a reliable and responsible traffic crash prediction model is crucial to address growing public safety concerns and improve the sa...

A hybrid approach for modeling bicycle crash frequencies: Integrating random forest based SHAP model with random parameter negative binomial regression model.

Accident; analysis and prevention
To effectively capture and explain complex, nonlinear relationships within bicycle crash frequency data and account for unobserved heterogeneity simultaneously, this study proposes a new hybrid framework that combines the Random Forest-based SHapley ...

Optimizing vehicle Front-End structure for e-bike rider Safety: An advanced Multi-Objective approach using injury prediction models.

Accident; analysis and prevention
A multi-objective optimization method based on an injury prediction model is proposed to address the increasingly prominent safety issues for e-bike riders in Chinese road traffic. This method aims to enhance the protective effect of vehicle front-en...

Analyzing the heterogenous effects of factors on high-range speeding likelihood of taxi speeders: Does explainable deep learning provides more insights than random parameter approach?

Accident; analysis and prevention
The random parameters Generalized Linear Model (GLM) is frequently used to model speeding characteristics and capture the heterogenous effects of factors. However, this statistical approach is seldom employed for prediction and generalization due to ...