AIMC Journal:
Computational and mathematical methods in medicine

Showing 301 to 310 of 406 articles

TISNet-Enhanced Fully Convolutional Network with Encoder-Decoder Structure for Tongue Image Segmentation in Traditional Chinese Medicine.

Computational and mathematical methods in medicine
Extracting the tongue body accurately from a digital tongue image is a challenge for automated tongue diagnoses, as the blurred edge of the tongue body, interference of pathological details, and the huge difference in the size and shape of the tongue...

An Automatic Epilepsy Detection Method Based on Improved Inductive Transfer Learning.

Computational and mathematical methods in medicine
Epilepsy is a chronic disease caused by sudden abnormal discharge of brain neurons, causing transient brain dysfunction. The seizures of epilepsy have the characteristics of being sudden and repetitive, which has seriously endangered patients' health...

Research and Verification of Convolutional Neural Network Lightweight in BCI.

Computational and mathematical methods in medicine
With the increasing of depth and complexity of the convolutional neural network, parameter dimensionality and volume of computing have greatly restricted its applications. Based on the SqueezeNet network structure, this study introduces a block convo...

A Comparative Analysis of Visual Encoding Models Based on Classification and Segmentation Task-Driven CNNs.

Computational and mathematical methods in medicine
Nowadays, visual encoding models use convolution neural networks (CNNs) with outstanding performance in computer vision to simulate the process of human information processing. However, the prediction performances of encoding models will have differe...

An Epilepsy Detection Method Using Multiview Clustering Algorithm and Deep Features.

Computational and mathematical methods in medicine
The automatic detection of epilepsy is essentially the classification of EEG signals of seizures and nonseizures, and its purpose is to distinguish the different characteristics of seizure brain electrical signals and normal brain electrical signals....

A Simple Method to Train the AI Diagnosis Model of Pulmonary Nodules.

Computational and mathematical methods in medicine
BACKGROUND: The differential diagnosis of subcentimetre lung nodules with a diameter of less than 1 cm has always been one of the problems of imaging doctors and thoracic surgeons. We plan to create a deep learning model for the diagnosis of pulmonar...

Research of Epidemic Big Data Based on Improved Deep Convolutional Neural Network.

Computational and mathematical methods in medicine
In recent years, with the acceleration of the aging process and the aggravation of life pressure, the proportion of chronic epidemics has gradually increased. A large amount of medical data will be generated during the hospitalization of diabetics. I...

Spatial-Frequency Feature Learning and Classification of Motor Imagery EEG Based on Deep Convolution Neural Network.

Computational and mathematical methods in medicine
EEG pattern recognition is an important part of motor imagery- (MI-) based brain computer interface (BCI) system. Traditional EEG pattern recognition algorithm usually includes two steps, namely, feature extraction and feature classification. In feat...

An Intelligent Diagnosis Method of Brain MRI Tumor Segmentation Using Deep Convolutional Neural Network and SVM Algorithm.

Computational and mathematical methods in medicine
Among the currently proposed brain segmentation methods, brain tumor segmentation methods based on traditional image processing and machine learning are not ideal enough. Therefore, deep learning-based brain segmentation methods are widely used. In t...

Electrical Impedance Tomography-Based Abdominal Subcutaneous Fat Estimation Method Using Deep Learning.

Computational and mathematical methods in medicine
This paper proposes a deep learning method based on electrical impedance tomography (EIT) to estimate the thickness of abdominal subcutaneous fat. EIT for evaluating the thickness of abdominal subcutaneous fat is an absolute imaging problem that aims...