AI Medical Compendium Journal:
Computer methods and programs in biomedicine

Showing 111 to 120 of 844 articles

Immunohistochemistry annotations enhance AI identification of lymphocytes and neutrophils in digitized H&E slides from inflammatory bowel disease.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Histologic assessment of the immune infiltrate in H&E slides is vital in diagnosing and managing inflammatory bowel diseases, but these assessments are subjective and time-consuming even for those with expertise. The develop...

Optimizing graph neural network architectures for schizophrenia spectrum disorder prediction using evolutionary algorithms.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: The accurate diagnosis of schizophrenia spectrum disorder plays an important role in improving patient outcomes, enabling timely interventions, and optimizing treatment plans. Functional connectivity analysis, utilizing func...

A time-dependent explainable radiomic analysis from the multi-omic cohort of CPTAC-Pancreatic Ductal Adenocarcinoma.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: In Pancreatic Ductal Adenocarcinoma (PDA), multi-omic models are emerging to answer unmet clinical needs to derive novel quantitative prognostic factors. We realized a pipeline that relies on survival machine-learning (SML) ...

MMGCN: Multi-modal multi-view graph convolutional networks for cancer prognosis prediction.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Accurate prognosis prediction for cancer patients plays a significant role in the formulation of treatment strategies, considerably impacting personalized medicine. Recent advancements in this field indicate that integrating...

Conv-RGNN: An efficient Convolutional Residual Graph Neural Network for ECG classification.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Electrocardiogram (ECG) analysis is crucial in diagnosing cardiovascular diseases (CVDs). It is important to consider both temporal and spatial features in ECG analysis to improve automated CVDs diagnosis. Significant progre...

SleepGCN: A transition rule learning model based on Graph Convolutional Network for sleep staging.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Automatic sleep staging is essential for assessing and diagnosing sleep disorders, serving millions of people who suffer from them. Numerous sleep staging models have been proposed recently, but most of them have not fully e...

Prediction of mortality events of patients with acute heart failure in intensive care unit based on deep neural network.

Computer methods and programs in biomedicine
BACKGROUND: Acute heart failure (AHF) in the intensive care unit (ICU) is characterized by its criticality, rapid progression, complex and changeable condition, and its pathophysiological process involves the interaction of multiple organs and system...

Beyond pixel: Superpixel-based MRI segmentation through traditional machine learning and graph convolutional network.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Tendon segmentation is crucial for studying tendon-related pathologies like tendinopathy, tendinosis, etc. This step further enables detailed analysis of specific tendon regions using automated or semi-automated methods. Thi...

Myo-regressor Deep Informed Neural NetwOrk (Myo-DINO) for fast MR parameters mapping in neuromuscular disorders.

Computer methods and programs in biomedicine
Magnetic Resonance (MR) parameters mapping in muscle Magnetic Resonance Imaging (mMRI) is predominantly performed using pattern recognition-based algorithms, which are characterised by high computational costs and scalability issues in the context of...

Machine learning approach to investigate pregnancy and childbirth risk factors of sleep problems in early adolescence: Evidence from two cohort studies.

Computer methods and programs in biomedicine
BACKGROUND: This study aimed to predict early adolescent sleep problems using pregnancy and childbirth risk factors through machine learning algorithms, and to evaluate model performance internally and externally.