The diagnosis of abdominal pain in emergency departments is challenging, and appendicitis is a common concern. Atypical symptoms often delay diagnosis. Although the Alvarado score aids in decision-making, its low specificity can lead to unnecessary s...
Sepsis triggers a harmful immune response due to infection, causing high mortality. Predicting sepsis outcomes early is vital. Despite machine learning's (ML) use in medical research, local validation within the Medical Information Mart for Intensive...
Weekend discharges occur less frequently than discharges on weekdays, contributing to hospital congestion. Artificial intelligence algorithms have previously been derived to predict which patients are nearing discharge based upon ward round notes. In...
This study aimed to develop several new machine learning models based on hibernating myocardium to predict the major adverse cardiac events(MACE) of ischemic left ventricular systolic dysfunction(LVSD) patients receiving either percutaneous coronary ...
Lung ultrasound (LUS) is an effective tool for diagnosing acute heart failure (AHF). However, several imaging protocols currently exist and how to best use LUS remains undefined. We aimed at developing a lung ultrasound-based model for AHF diagnosis ...
Machine learning (ML) has been applied in sepsis recognition across different healthcare settings with outstanding diagnostic accuracy. However, the advantage of ML-assisted sepsis alert in expediting clinical decisions leading to enhanced quality fo...